
www.sciencedirect.com

c o r t e x 9 2 ( 2 0 1 7 ) 2 3 3e2 4 8
Available online at
ScienceDirect

Journal homepage: www.elsevier.com/locate/cortex
Research report
Is laughter a better vocal change detector than a
growl?
Ana P. Pinheiro a,b,*, Carla Barros b, Margarida Vasconcelos b,
Christian Obermeier c and Sonja A. Kotz c,d

a Faculty of Psychology, University of Lisbon, Lisbon, Portugal
b Neuropsychophysiology Laboratory, School of Psychology, University of Minho, Braga, Portugal
c Dept. of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
d Faculty of Psychology and Neuroscience, Dept. of Neuropsychology & Psychopharmacology, Maastricht University,

The Netherlands
a r t i c l e i n f o

Article history:

Received 19 September 2016

Reviewed 18 November 2016

Revised 26 January 2017

Accepted 27 March 2017

Action editor Ed Wilding

Published online 11 April 2017

Keywords:

Emotion

Voice

Prediction error

Mismatch negativity

Beta oscillations
* Corresponding author. Neuropsychophysio
957, Braga, Portugal.

E-mail address: ana.pinheiro@psi.uminh
http://dx.doi.org/10.1016/j.cortex.2017.03.018
0010-9452/© 2017 Elsevier Ltd. All rights rese
a b s t r a c t

The capacity to predict what should happen next and to minimize any discrepancy be-

tween an expected and an actual sensory input (prediction error) is a central aspect of

perception. Particularly in vocal communication, the effective prediction of an auditory

input that informs the listener about the emotionality of a speaker is critical. What is

currently unknown is how the perceived valence of an emotional vocalization affects the

capacity to predict and detect a change in the auditory input. This question was probed in a

combined event-related potential (ERP) and time-frequency analysis approach. Specifically,

we examined the brain response to standards (Repetition Positivity) and to deviants

(Mismatch Negativity e MMN), as well as the anticipatory response to the vocal sounds

(pre-stimulus beta oscillatory power). Short neutral, happy (laughter), and angry (growls)

vocalizations were presented both as standard and deviant stimuli in a passive oddball

listening task while participants watched a silent movie and were instructed to ignore the

vocalizations. MMN amplitude was increased for happy compared to neutral and angry

vocalizations. The Repetition Positivity was enhanced for happy standard vocalizations.

Induced pre-stimulus upper beta power was increased for happy vocalizations, and pre-

dicted the modulation of the standard Repetition Positivity. These findings indicate

enhanced sensory prediction for positive vocalizations such as laughter. Together, the

results suggest that positive vocalizations are more effective predictors in social commu-

nication than angry and neutral ones, possibly due to their high social significance.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

In a constantly changing environment humans face the

challenge of having to prioritize sensations that compete for

attention. Perception becomes more effective when sensory

predictions are formed and updated based on the comparison

of predicted and actual sensory feedback to minimize a pre-

diction error (e.g., Arnal& Giraud, 2012). The automatic nature

of such a mechanism plays a critical role in social communi-

cation: as much of the sensory input in our daily life has an

affective tone, our capacity to effectively respond to unpre-

dicted changes based on their emotional salience significantly

contributes to effective social interactions (Jessen & Kotz,

2011; Jessen, Obleser, & Kotz, 2012).

In social communication, the voice represents one of the

most relevant sound categories (Belin, Fecteau, & Bedard,

2004): it plays a pivotal role in conveying not only verbal in-

formation, but also important cues about the identity, age,

and emotional state of a speaker (Belin, Bestelmeyer, Latinus,

& Watson, 2011). However, when compared to the study of

facial emotion expressions, fewer studies have investigated

the neural basis of vocal emotion processing. The existing

studies support a multi-stage model of vocal emotional

perception and recognition (Paulmann & Kotz, 2008;

Paulmann, Seifert, & Kotz, 2010; Schirmer & Kotz, 2006;

Wildgruber, Ackermann, Kreifelts, & Ethofer, 2006). An open

question is how human listeners automatically detect sa-

liency in vocalizations that may signal a change from an ex-

pected vocalization, and how the valence expressed by the

voice (i.e., its perceived pleasantness vs. unpleasantness e

e.g., Bradley & Lang, 2000) influences this process. For

instance, consider a mismatch between an angry vocalization

and an utterance describing a happy event. The utterance will

predict that the accompanying vocalization should be happy

as well, but what you will hear is the opposite. The difference

between how and when the vocal input occurs, and how it

was expected to be is referred to as a prediction error leading

to surprise, and a likely behavioral adaptation of a listener

(e.g., Friston, 2012). As vocal information unfolds dynamically

over time, the high temporal resolution of the electroen-

cephalogram (EEG) is ideal to tackle these types of conflict in

two ways: with a phase-locked evoked response and a non-

phase locked oscillatory response. Specifically, pre-stimulus

oscillatory activity may be better suited to probe how future

auditory events are anticipated (e.g., Bernasconi, Manuel,

Murray, & Spierer, 2011; van Ede, Jensen, & Maris, 2010), and

therefore to shed light on the neurofunctional processes un-

derlying the formation of a prediction.

1.1. Detecting emotional change e insights from ERPs

ERPs offer a unique glimpse into the temporal window of

predictive effects in emotional voice processing. A commonly

used electrophysiological event-related measure to estimate

predictive processes is the Mismatch Negativity (MMN). The

MMN is a negative ERP component that peaks at 100e250msec

after sound onset, and signals the preattentive change

detection in the sound environment (e.g., N€a€at€anen, 1995,

2001). In MMN experiments participants are instructed to
ignore a stream of sounds that differ in probability (high-

probability or standard sounds vs. low-probability or deviant

sounds), and to focus their attention on a concurrent task

such as watching a movie. Recent accounts of the functional

significance of the MMN suggest that this component is a

neurophysiological signature of predictive processing and, in

particular, of a prediction error (e.g., Garrido, Kilner, Stephan,

& Friston, 2009). Two important processes seem to be at play.

On the one hand, the detection of regularity in an auditory

scene is required: the automatic extraction of statistical reg-

ularities (i.e., a frequently presented stimulus or standard

sound) leads to increased top-down expectations, thereby

resulting in suppressed neural responsiveness to the expected

sound. In other words, the information about a frequently

occurring stimulus is stored in a memory representation that

then can facilitate predictions about what will happen next in

an auditory environment. On the other hand, in the case of

change detection, the mismatch between the top-down

expectation and the perceived sensory input (i.e., a low-

probability stimulus or deviant sound) leads to a prediction

error that enhances neural responsiveness to the unexpected

sound. As such the MMN reflects the difference between top-

down expectation and incoming bottom-up sensory signals,

and represents a prediction error signal (Baldeweg, 2007;

Garrido et al., 2009; Todd, Michie, Schall, Ward, & Catts,

2012; Wacongne, Changeux, & Dehaene, 2012; Winkler &

Czigler, 2012).

It is worth noting that some of the studies that used a

passive roving standard stimulation to probe predictive pro-

cessing have also revealed repetition effects to standard

sounds that predicted the MMN elicitation (Baldeweg, 2007;

Costa-Faidella, Baldeweg, Grimm, & Escera, 2011; Haenschel,

Vernon, Dwivedi, Gruzelier, & Baldeweg, 2005). They showed

that an increase in the number of stimulus repetitions resul-

ted in an increase of the P50 and P2 amplitudes, which was

termed ‘Repetition Positivity’. These effects are typically

observed in response to standard stimuli at frontocentral

electrode sites from 50 to 250 msec post-stimulus onset

(Baldeweg, 2007; Costa-Faidella et al., 2011; Haenschel et al.,

2005). They are proposed to reflect a neurophysiological

correlate of a suppressed prediction error due tomore efficient

top-down predictions (Baldeweg, 2007).

The MMN may indicate how a change in emotional voice

quality is detected preattentively. However, only a few MMN

studies have investigated vocal emotional perception. The

existing evidence confirms a rapid categorization of vocali-

zations based on their emotional relevance. Automatic dis-

tinctions of emotional vocalizations indexed by the MMNmay

be based on a minimal amount of acoustic information, such

as mean F0 and its variation over time (Leitman, Sehatpour,

Garidis, Gomez-Ramirez, & Javitt, 2011). Schirmer and col-

leagues reported an earlier MMN peak latency for happy than

for neutrally intoned pseudowords (Schirmer, Striano, &

Friederici, 2005), and a larger MMN amplitude for angry rela-

tive to neutral meaningless syllables that was positively

correlated to state anxiety (Schirmer & Escoffier, 2010). Chen

and collaborators (Chen, Lee,& Cheng, 2014) described a MMN

amplitude increase for pseudowords expressing disgust

compared to happiness. Using magnetoencephalography

(MEG), Thonnessen et al. (2010) observed increased activation

http://dx.doi.org/10.1016/j.cortex.2017.03.018
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2 Please note that low and high frequencies in the beta range
(low vs. high beta or beta 1: 13e18 Hz, beta 2: 19e25 Hz, beta 3:
26e30 Hz; reviewed in Weiss & Mueller, 2012) are thought to
reflect different cognitive operations (e.g., Shahin, Picton, &
Miller, 2009). Whereas low beta (13e20 Hz) effects have been
related to the maintenance of information in working memory
and temporal binding of segregated events e i.e., unification (e.g.,
Bastiaansen, Magyari, & Hagoort, 2010; Lewis et al., 2015), effects
in the upper range of the beta band (25e30 Hz) were associated
with template matching in auditory memory in an oddball task (e.
g., Shahin et al., 2009). For example, this may be critical for the
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in the insula for happy relative to angry pseudowords. How-

ever, to the best of our knowledge, so far no study has inves-

tigated automatic emotional change detection with human

vocalizations or affective bursts. As they lack segmental

structure and semantic information (Kotchoubey, Kaiser,

Bostanov, Lutzenberger, & Birbaumer, 2009; Liu et al., 2012;

Sauter & Eimer, 2010) compared to emotionally inflected

speech, vocalizations represent a more primitive expression

of emotion (e.g., Belin et al., 2004). Compared to emotional

speech prosody, vocalizations are associated with faster

salience detection from acoustic cues, and lead to a more

rapid emotional evaluation (e.g., Pell et al., 2015). Therefore,

probing predictive processes in emotional vocalizations may

lead to a better understanding of sensory change detection in

emotional vocalizations devoid of concurrent lexical and

phonological information, as it would typically be found in

emotional speech.

1.2. Detecting emotional change e insights from neural
oscillatory activity

Classical ERP analysis can be extended by the analysis of

neural oscillations in the time-frequency domain, which re-

flects the trial-by trial dynamics of brain activity during sen-

sory and cognitive processing (e.g., Roach & Mathalon, 2008;

Stothart & Kazanina, 2013) and, more importantly, may indi-

cate how participants predict when and what quality a stim-

ulus may have before being exposed to the stimulus (e.g.,

Arnal & Giraud, 2012; van Ede et al., 2010). Specifically, the

analysis of oscillatory activitymay provide critical insight into

the mechanisms involved in change detection of emotional

vocalizations that ERPs alone cannot provide. As the infor-

mation contained in vocalizations is unfolding over time, and

as there is no clear emotion recognition point, the information

provided by non-phase locked neural oscillatory changes in

EEG power is of particular interest (e.g., Jessen & Kotz, 2011;

Jessen et al., 2012). Therefore, the analysis of induced neural

oscillations represents a meaningful approach to understand

the brainmechanisms underlying the detection of regularities

and change in emotional vocalizations. Specifically, pre-

stimulus activity may be better suited to probe the effects of

top-down expectations1 on emotional voice perception, i.e.,

on how future vocal events are anticipated (e.g., Bernasconi

et al., 2011; Geerligs & Akyürek, 2012; Weisz et al., 2014). Pre-

vious studies found that the state of the brain before an event

influences the neural response to this event. For example, pre-

stimulus neural oscillations in the beta-bandwere found to be

modulated by top-down expectations (van Ede et al., 2010), to

predict perception performance (Hanslmayr et al., 2007;

Lange, Halacz, Van Dijk, Kahlbrock, & Schnitzler, 2012), and

to specifically facilitate temporal integration (Geerligs &

Akyürek, 2012), or temporal order judgment accuracy

(Bernasconi et al., 2011). These studies agree that pre-stimulus

neural oscillations inform about stimulus anticipation, a

cornerstone of predictive coding in the context of emotional

vocalizations.
1 Here understood as a “neural state of learned readiness to
experience events with particular characteristics” (Todd et al.,
2012, p. 223).
Most of the studies that probed the effects of emotion on

neural oscillations (reviewed in Symons, El-Deredy, Schwar-

tze, & Kotz, 2016) have used visual stimuli and focused on

phase-locked (evoked) oscillations (e.g., Balconi & Mazza,

2009; Güntekin & Bas‚ar, 2010; Keil et al., 2001; Müller, Keil,

Gruber, & Elbert, 1999). Studies that probed the effects of

emotion in the time-frequency domain using dynamic stimuli

reported consistent effects in the beta frequency band. A

stronger suppression of non-phase-locked beta power

(15e25 Hz, 200 msec post-stimulus onset) was observed for

emotional (fearful and angry) compared to neutral audiovisual

stimuli (Jessen & Kotz, 2011). Probing change detection in

emotional prosody, Chen and collaborators (Chen, Pan, Wang,

Zhang, & Yuan, 2015) observed a decrease of event-related

spectral perturbation (phase-locked to stimulus onset) in the

beta band (18e26 Hz) between 400 and 750 msec to vocal

emotional change (neutral-to-angry and angry-to-neutral)

under explicit task instructions. Of note, these three studies

(Chen et al., 2015; Jessen & Kotz, 2011; Jessen et al., 2012) did

not include a positive stimulus. Contrasting positively and

negatively valencedmusical chords, two studies (Omigie et al.,

2015; Sammler, Grigutsch, Fritz, & Koelsch, 2007) found a

decrease in phase-locked beta power (13e20 Hz, event-related

spectral perturbation) for dissonant (negatively valenced)

relative to consonant (positively valenced) musical chords

around 800 msec and around 1300 msec after stimulus onset.

These findings highlight the sensitivity of beta oscillations to

the emotional salience of a stimulus.2 In particular, non-phase

locked beta oscillations can clarify how listeners anticipate

the expected quality of a vocal stimulus as they bear no con-

stant time and phase relationship with the eliciting vocal

event, contrary to phase-locked oscillations that can be

masked by ERPs (e.g., Deiber et al., 2007).

Besides their critical function in emotional processes, beta

oscillations have also been associated with deviance pro-

cessing. In particular, decreased beta power or desynchroni-

zation has been linked to the detection of an unexpected

deviant event (e.g., Chen et al., 2015; Kim & Chung, 2008),

while an increase in beta-band activity or synchronization has

been proposed to indicate that a current cognitive and motor

state is maintained and, as such, reflects a top-down effect

(e.g., Engel & Fries, 2010). Both processes, the extraction of

regularities or the adaptation to change in an auditory scene,

are characteristic of emotional processes in communication.

Critically, none of these studies looked at oscillatory processes
cortical maintenance of memory representations of vocal sounds,
which is necessary for the higher-order cognitive evaluation of
their emotional significance. However, the functional role of low
vs. high beta remains to be clarified when a task involves the
prediction of emotional cues.

http://dx.doi.org/10.1016/j.cortex.2017.03.018
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that take place before a vocal stimulus onset. Thus, the

question arises whether anticipatory processes in vocal

perception are modulated by emotion, and how this modu-

lates change detection.

1.3. Valence effects in voice processing

The differentiation between neutral and emotional cues

occurs rapidly in the brain, within 200 msec after stimulus

onset (e.g., Liu et al., 2012; Paulmann & Kotz, 2008; Pell et al.,

2015; Pinheiro et al., 2013, 2014). While a general increase of

the ERP amplitude was observed for neutral compared to

emotional prosodic stimuli irrespective of valence (e.g.,

Paulmann & Kotz, 2008), other studies revealed that auditory

processing may be differentially modulated by valence types

earlier on (e.g., an increased P50 response to angry relative

to neutral and happy vocalizations e Liu et al., 2012). How-

ever, it remains unclear whether positive and negative

emotions affect prediction and change detection differently.

In the current study, we focused on happy (laughter) and

angry (growls) vocalizations as they are recognized cross-

culturally and above chance (Laukka et al., 2013). Also,

they have similar acoustic profiles, such as high intensity

and variable F0, which allows to easily distinguish them

from other emotions (Hawk, van Kleef, Fischer, & van der

Schalk, 2009; Schr€oder, 2003). As shown in previous studies

(Johnstone, van Reekum, Oakes, & Davidson, 2006; Warren

et al., 2006; reviewed in Scott, Lavan, Chen, & McGettigan,

2014), positive vocalizations, such as laughter, represent

particularly salient social signals, as they are highly relevant

for social bonding. Johnstone and collaborators (Johnstone

et al., 2006) compared brain activation to happy and angry

vocalizations and found increased activation in the tempo-

ral cortex and in the right inferior frontal gyrus, as well as in

the left insula and left amygdala, in response to happy

compared to angry vocalizations. Consistent with the high

(social) relevance of happy vocalizations at least in non-

clinical populations, Sergerie, Chochol, and Armony (2008)

reported increased amygdala activation for positive

compared to negative stimuli in their meta-analysis of fMRI

research of emotion processing. Warren et al. (2006)

demonstrated that passively listening to positive vocal

emotions (e.g., laughter) was associated with increased

activation in the posterior left inferior frontal gyrus (IFG)

compared to negative vocal emotions (fear and disgust). The

authors proposed that positive valence expressed in the

voice (amusement [i.e., laughter] and cheers of triumph) is

related to a greater propensity for the activation of motor

representations encoded in the posterior IFG (the hemody-

namic responses were positively correlated with increasing

positive valence). The enhanced motor activation may pro-

vide a mechanism for mirroring positive emotional states

(i.e., empathic responses) in social interactions. These

studies indicate that, contrary to the common view that

negative emotions are more salient due to their evolutionary

significance (e.g., Smith, Cacioppo, Larsen, & Chartrand,

2003), positive emotions, at least in the auditory domain,

may override negative emotions in attracting resources due

to their high social significance (e.g., Scott et al., 2014).
1.4. The current study and hypotheses

The current study aimed at probing the effects of vocal emo-

tions on forming predictions about the auditory environment

and on automatic change detection. Hence, we used a modi-

fied oddball task, in which probability and valence were

manipulated: neutral and emotional vocalizations (happy and

angry) were presented both as high-probability (standard) and

low-probability (deviant) task-irrelevant stimuli in an unat-

tended sound sequence in different experimental blocks to

the same participants. This procedure eliminates effects of

acoustic differences between neutral and emotional stimuli as

each sound serves as its own acoustic control (e.g., Jacobsen&

Schr€oger, 2003; Leitman et al., 2011). Further, the selected

emotional vocalizations did not differ in perceived arousal. As

emotional vocalizations are expressed almost automatically

in social situations, implicit rather than explicit emotional

processing paradigms are closer to real-life settings.

A combined ERP and time-frequency approachwas utilized

to investigate the mechanisms underlying implicit emotional

voice processing within a predictive coding framework. Next

to the analysis of phase-locked ERP signals, we also examined

non-phase locked (induced) oscillations that provide clues

about top-down mechanisms (e.g., Tallon-Baudry & Bertrand,

1999), which play a critical role in prediction. Our analysis

focused both onMMNdifferencewaveforms, as well as on EEG

activity to standard and deviant stimuli separately, to shed

light on predictive processes associated with the representa-

tion of regularities in vocal stimulation (Repetition Positivity),

and on the detection of a prediction error (MMN). Although

repetition suppression effects have been widely described in

auditory neuroscience, to date no study has attempted to

explore the interactions between stimulus repetition and sa-

liency at the electrophysiological level. Therefore, we exam-

ined how the prediction of a forthcoming vocal sound was

modulated by the number of previous stimulus repetitions

(standard ERP amplitude). In the analysis of neural oscillatory

activity, we were mainly interested in pre-stimulus activity

that modulates pre-attentive processing of emotional vocal

cues. In light of current evidence on the role of beta activity in

anticipation and prediction (Engel & Fries, 2010), a special

emphasis was placed on pre-stimulus beta power.

We expected predictive processes to be facilitated by the

emotional quality of the vocalizations (e.g., Leitman et al.,

2011; Schirmer et al., 2005). Specifically, we hypothesized

that valence-specific differences would modulate the predic-

tive processes indexed by the MMN, the Repetition Positivity,

and by pre-stimulus beta oscillatory activity. Two competing

hypotheses were tested. If predictive processes are facilitated

by the negative valence of vocalizations (i.e., threat-related

cues associated with avoidance), we expected an increase in

MMN amplitude for unexpected (deviant) growls compared to

laughter. This would also be evident in an increased Repeti-

tion Positivity for standard negative vocalizations. If, instead,

predictive processes are enhanced for positive vocalizations

(i.e., affiliation-related cues associated with approach), we

expected to observe an increased MMN for unexpected

(deviant) laughter relative to growls, as well as an increased

Repetition Positivity in response to positive standard

http://dx.doi.org/10.1016/j.cortex.2017.03.018
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Acoustic properties Vocalization
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vocalizations. We also expected to observe increased pre-

stimulus beta induced power as a function of increased pre-

dictability of the emotionally tagged vocalizations.
Neutral Happy
(Laughter)

Angry
(Groal)

Mean F0 (Hz) 190.57 341.27 397.52

Averaged pitch

contour (Hz)

190 341 398

Pitch onset

time (msec)

20.33 20.18 20.19

Intensity onset

time (msec)

20.33 46.18 46.19

Maximum pitch

time (msec)

280.33 340.18 270.19

Maximum amplitude

time (msec)

49.27 33.36 24.19
2. Method

2.1. Participants

Participants were 23 healthy college students (14 females;

23.00 ± 3.17 years; 14.96 ± 3.13 years of education). The in-

clusion criteria were: European Portuguese as first language;

right handedness (Oldfield, 1971); no history of neurological

illness; no history or current psychiatric disorder, as assessed

by the Brief Symptom Inventory (Portuguese version e

Canavarro, 1999); no presentmedication formedical disorders

that could have deleterious effects on EEG morphology; no

hearing, vision, or upper body impairment e relevant for

neuropsychological function. Participants were given course

credit for their participation in the study, and providedwritten

informed consent for the experimental protocol approved by a

local Ethical Committee.

2.2. Stimuli

Stimuli were exemplars of a female vocalization,3 varying in

emotional quality: happy (laughter), angry (growls), and

neutral vocalizations (the vowel ah -/ɑ/with neutral intona-

tion). The sounds were selected from the Montr�eal Affective

Voices (MAV) battery of non-verbal emotional vocalizations

(Belin, Fillion-Bilodeau, & Gosselin, 2008), after validation in a

sample of European Portuguese participants (n ¼ 60), who did

not participate in the EEG study (Supplementary Table 1).

These participants listened to each vocalization via loud-

speakers and rated its valence (ranging from 1e“extremely

unpleasant” to 9e“extremely pleasant”), arousal (ranging

from 1e“extremely calm” to 9e“extremely aroused”), and

dominance (ranging from 1e“totally controlled” to 9e“totally

in control”), using the 9-point SAM scale (Bradley & Lang,

1994). The duration of the MAV vocalizations (Belin et al.,

2008) was shortened to 700 msec but their emotional content

was preserved (duration was the same for all vocal sounds

presented in the current study). Stimuli were normalized in

mean intensity (70 dB) using a Praat script (Boersma &

Weenink, 2013). A description of the acoustic properties of

each vocalization can be found in Table 1.

2.3. Procedure

Each participant sat comfortably at a distance of 100 cm from

a desktop computer monitor in a sound-attenuated and

electrically shielded room. Vocalizations were presented in

four blocks separated by brief rest periods, either as standard

or deviant sounds to eliminate the effects of physical
3 The experimental stimuli included neutral, happy (laughter)
and angry (growl) exemplars of a female voice only, based on
previous studies reporting rapid emotional decoding within the
first 200 msec after a vocal stimulus onset independent of
speaker's voice, i.e., male or female (e.g., Paulmann & Kotz, 2008).
differences between the stimuli (Fig. 1; Block 1 ¼ neutral

standards, happy deviants; Block 2¼ happy standards, neutral

deviants; Block 3 ¼ neutral standards, angry deviants; Block

4 ¼ angry standards, neutral deviants). Each block contained

1200 stimuli: 1050 standard (p¼ .875) and 150 deviant (p¼ .125)

vocalizations. The inter-stimulus interval (ISI) was 500 msec

following previous studies (Schirmer et al., 2005).

Stimuli were presented in a pseudo-randomized orderwith

a minimum of six standards occurring between each deviant.

The experimental blocks were counterbalanced across par-

ticipants. The presentation and timing of stimuli were

controlled through Presentation software (version 16.3; Neu-

robehavioral Systems, Inc.). Auditory stimuli were presented

via Sennheiser CX 300-II headphones. While listening to the

stimuli, participants were instructed to watch a silent movie

(with neutral content e nature videos), and to ignore the

auditory stimuli. They were also told they would be asked

questions about the movie they watched at the end of the

session. The movie was presented on a LG ACPI x86-based

computer. At the end of the experimental sessions, partici-

pants rated the valence, arousal, and dominance of each

vocalization using a 9-point SAM scale (Bradley & Lang, 1994).

2.4. EEG data acquisition and analysis

EEG data were recorded using a 64-channel BioSemi Active

Two system in a continuous mode at a digitization rate of

512 Hz, and stored on disk for later analysis. Eye blinks and

movements were monitored through electrodes placed on

both temples (horizontal electrooculogram), and another one

below the left eye (vertical electrooculogram). The offset of all

electrodes was kept below 40 mV. Eye blinks and movements

were monitored by electrodes placed on both temples (hori-

zontal electrooculagram), and another one below the left eye

(vertical electrooculogram). During data acquisition, the ac-

tivity at all channels was referred to the system's internal loop
(CMS/DRL sensors).

EEG data were analyzed using EEGLAB 13.1.1b software

(Delorme & Makeig, 2004) and in-house developed Matlab

functions (The Mathworks). Data were referenced offline to

the average of the left and right mastoids and high-pass,

before applying a high-pass filter with a half-amplitude cut-

off value of .1 Hz. Individual ERP epochs were created for each

http://dx.doi.org/10.1016/j.cortex.2017.03.018
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Fig. 1 e Schematic illustration of the experimental design.
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stimulus type, with a 500 msec pre-stimulus baseline up to

700 msec post-stimulus epoch. Segments were screened for

eye movements, muscle artifacts, electrode drifting and

amplifier blocking. An independent component analysis was

used to remove ocular andmuscle artifacts (e.g., Hipp& Siegel,

2013; Keren, Yuval-Greenberg, & Deouell, 2010). EEG epochs

with amplitudes exceeding ±100 mV were rejected. After arti-

fact rejection, at least 84% of the segments per condition per

participant entered the analyses. Conditions did not differ in

the number of non-rejected epochs (p > .05). To ensure the

balance between the number of standard and deviant sounds,

only the standard sounds immediately preceding a given

deviant were included in subsequent analyses.
2.4.1. ERP analyses
For ERP analyses, the EEG was baseline corrected using the

�200 to 0msec pre-stimulus interval. Neural activity related to

deviance detection was derived from the MMN. Difference

waveforms were formed by subtracting ERP activity to a given

vocalization when presented as standard in one experimental

block from that elicited by the same vocalization when pre-

sented as a deviant in another block (e.g., Leitman et al., 2011;

Schirmer et al., 2005). We selected a window of interest based

on previous literature (Chandrasekaran, Krishnan,&Gandour,

2007; Chen et al., 2014; Schirmer & Escoffier, 2010), and on

visual inspection of the waveforms over all conditions, all

participants, and all scalp electrodes. Thewaveforms revealed

http://dx.doi.org/10.1016/j.cortex.2017.03.018
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Table 2 e Affective ratings of the experimental stimuli by
the participants.

Type of vocalization Affective dimension

Valence Arousal Dominance

Neutral 4.70 (.78) 3.09 (1.35) 7.04 (1.85)

Happy (Laughter) 7.96 (.98) 6.22 (1.83) 7.04 (1.67)

Angry (Groal) 2.52 (1.70) 6.83 (1.40) 3.96 (1.69)

Note: M (SD) values are shown. Values range from 1 to 9: a) valence:

1 ¼ “extremely unpleasant”, 9 ¼ “extremely pleasant”; b) arousal:

1 ¼ “extremely calm”, 9 ¼ “extremely aroused”; c) dominance:

1 ¼ “totally controlled”, 9 ¼ “totally in control”.
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that the MMN peaked between 160 and 230 msec following

stimulus onset for all electrodes, conditions, and participants.

This ensured that the data selection method was not influ-

enced by any condition-specific information at this stage of

the analysis, thus avoiding “double dipping” in the statistical

analysis (Kriegeskorte, Simmons, Bellgowan, & Baker, 2009).

Individual MMN amplitudes were quantified by extracting the

mean amplitude voltage during the 160e230 msec interval.

Moreover, in order to get amore accurate view of how each

vocalization was processed when presented as the frequent

(i.e., predicted) or infrequent (i.e., not predicted) stimulus, we

compared the amplitude for each vocalization as a standard

and as a deviant in the MMN latency window.

In order to examine the Repetition Positivity elicited by

standards, we based our quantification method on the previ-

ous literature (Baldeweg, 2007; Costa-Faidella et al., 2011;

Haenschel et al., 2005) and on the inspection of grand average

waveforms over all conditions, all participants, and all scalp

electrodes. Mean amplitude was extracted in two latency

windows of 80e160 msec (P50) and 180e260 msec (P2) for

standards, as a function of the number of repetitions in the

global sequence. As the current study did not use a roving

standard stimulation (contrary to previous studies that looked

at the Repetition Positivity e e.g., Costa-Faidella et al., 2011;

Haenschel et al., 2005), repetition effects were investigated

by dividing the sequence of sounds in 5 blocks on the basis of

cumulative frequency: block 1 included the averaged activity

to the first 10% of standard presentations; block 2 included the

first 25% of standard presentations; block 3 included the first

50% of standard presentations; block 4 included the first 75%

of standard presentations; block 5 included 100% of standard

presentations. Amplitudes in the two intervals (P50 and P2)

were averaged for the five stimulus blocks.

2.4.2. Time-frequency analyses
Time frequency decomposition was performed using the

Morlet wavelet transform (with a time-frequency relation of

m ¼ 7), applied in .25 Hz steps from 4 to 100 Hz at each time

point to yield time-frequency (TF)maps of induced power. The

wavelet frequency/duration ratio (c ¼ f0/sf) was 7 and its

multiplication factor (m) was 4. Baseline activity (�500 to

�250 msec) was subtracted from each TF map following the

recommendations by Cohen (2016). The analysis of the non-

phase-locked activity involved transforming each trial to the

frequency domain and averaging the resulting wavelet

transforms. We focused on the change in induced power

relative to a pre-stimulus baseline of 200 msec (�200 to

0 msec) in the range of 13e30 Hz (beta-band).
4 Even though the P3a component was not the major focus in
the current study, and as such no specific predictions were
formulated, the amplitude of this component was also analyzed
in the 260e330 msec latency window. The P3a is elicited by task-
irrelevant rare or novel stimuli, which is related to attention
orienting, with its amplitude increasing as a function of stimulus
salience (e.g., Nittono, 2006). The statistical analysis did not yield
a significant valence effect [F(2, 44) ¼ 1.348, p > .05].
3. Results

3.1. Behavior

Paired samples t-tests were performed to test differences be-

tween valence, arousal, and dominance ratings for the three

vocalizations. Considering valence, angry vocalizations (growls)

were rated as more unpleasant than neutral [t(22) ¼ 6.146,

p < .001] and happy (laughter) vocalizations [t(22) ¼ �11.535,

p< .001],while happy vocalizationswere rated asmore pleasant
than theneutral ones [t(22)¼ 10.575,p< .001]. Regardingarousal,

neutral vocalizations were rated as less arousing than both

angry [t(22) ¼ �12.086, p < .001] and happy vocalizations

[t(22) ¼ �6.696, p < .001], but no differences were observed in

arousal ratings of happy and angry vocalizations (p > .05). For

dominance, angry vocalizations received the lowest dominance

scores compared tobothneutral [t(22)¼ 6.95,p< .001] andhappy

vocalizations [t(22) ¼ �7.094, p < .001] (see Table 2).

3.2. Effects of stimulus status and emotion on the MMN

A regions-of-interest (ROIs) analysis was applied using four

ROIs: frontal (Fz, F3, F4), frontocentral (FCz, FC3, FC4), central

(Cz, C3, C4), and centroparietal (CPz, CP3, CP4). MMN mean

amplitude and peak latency were separately analyzed by a

repeated-measures analysis of variance (ANOVA) with

valence (neutral, happy [laughter], angry [growls]) and ROI as

within-subject factors. All analyses were corrected for non-

sphericity using the GreenhouseeGeisser method (the orig-

inal df is reported). All significance levels are two-tailed with

the present significance alpha level of p < .05. Main effects and

interactions were followed with pairwise comparisons be-

tween conditions, using the Sidak adjustment for multiple

comparisons. The effect sizes are shown as partial eta-

squared (hp
2).

Confirming the frontocentral distribution of the MMN

(Fig. 2), a ROI effect [F(3, 66) ¼ 20.680, p < .001, hp
2 ¼ .485]

revealed a generally increased (i.e., more negative) amplitude

in the frontocentral region relative to the central (p¼ .010) and

centroparietal (p < .001) regions. Differences in MMN ampli-

tude occurred as a function of valence and region [valence by

ROI interactioneF(6, 132) ¼ 2.610, p ¼ .020, hp
2 ¼ .106]. This

interaction was followed up with separate ANOVAs for each

region separately. In the central ROI [valence effecteF(2,

21) ¼ 4.263, p ¼ .028, hp
2 ¼ .289], MMN was enhanced for happy

relative to angry vocalizations (p ¼ .029). In the centroparietal

ROI [valence effecteF(2, 21) ¼ 5.437, p ¼ .013, hp
2 ¼ .341], MMN

was enhanced for happy relative to both neutral (p ¼ .05) and

angry (p ¼ .018) vocalizations.4 Furthermore, MMN peaked

http://dx.doi.org/10.1016/j.cortex.2017.03.018
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Fig. 2 e Grand average difference waveforms for neutral, happy (laughter), and angry (growls) vocalizations at midline

electrodes.

Fig. 3 e Grand average waveforms for standard and deviant vocalizations with neutral, positive (laughter), and negative

(growls) valence.
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earlier for happy relative to neutral vocalizations (p ¼ .030), as

indicated by a significant effect of valence [F(2, 44) ¼ 3.785,

p ¼ .030, hp
2 ¼ .147].

An amplitude analysis of non-subtracted waveforms for

standard and deviant sounds is illustrated in Fig. 3. The

repeated-measures ANOVA included the within-subject fac-

tors of stimulus status (2 levels e standard; deviant), valence

(3 levels), and ROI (4 levels). An enhanced negativity to deviant

compared to standard vocalizations was observed for the

three valence types [main effect of stimulus statuseF(1,

22) ¼ 61.506, p < .001, hp
2 ¼ .737]. Furthermore, a significant

interaction between stimulus status and valence [F(2,

44) ¼ 22.406, p < .001, hp
2 ¼ .505] revealed less negative ampli-

tude for happy relative to both neutral (p ¼ .004) and angry

(p ¼ .004) standards, as well as more negative amplitude for

happy relative to angry deviants (p ¼ .003), and for neutral

relative to angry deviants (p ¼ .012).

3.3. Effects of emotion on the Repetition Positivity

Considering the frontocentral distribution of the Repetition

Positivity (Baldeweg, 2007), the frontal (Fz, F3, F4) and fronto-

central (FCz, FC3, FC4) ROIswere the target of the analysis. The

Repetition Positivity amplitude was analyzed by a repeated-

measures analysis of variance (ANOVA) with valence

(neutral, happy [laughter], angry [growls]), number of repeti-

tions (5 levels), and ROI as within-subject factors, in two la-

tency windows (80e160 msec; 180e260 msec). We observed

that the probabilistic properties of the stimulus sequence (i.e.,

the number of previous repetitions) yielded rapid and

stimulus-specific adaptation of neural responses to the

repeated vocal sounds (see Fig. 4 and Supplementary Fig. 1).

In the interval of 80e160 msec (P50), a main effect of

repetition [F(4, 88) ¼ 9.017, p < .001, hp
2 ¼ .291] indicated a

stepwise positivity increase as a function of the number of

repetitions (block 1 < block 3 e p ¼ .028; block 1 < block 4 e

p ¼ .014; block 1 < block 5 e p ¼ .033). Furthermore, amplitude

was generally more positive for both happy and neutral vo-

calizations compared to angry standards [main effect of
Fig. 4 e Repetition effects for standard vocalizations with ne
valence e F(2, 44) ¼ 7.229, p ¼ .002, hp
2 ¼ .247; angry < neutral e

p ¼ .039; angry < happy e p ¼ .002]. Nonetheless, the inter-

action between valence and repetition number was not sig-

nificant (p > .05).

In the interval of 180e260 msec (P2), a main effect of

repetition number [F(4, 88) ¼ 8.600, p < .001, hp
2 ¼ 281] showed

an overall stepwise increase in mean standard ERP amplitude

with repetition (block 1 < 2 e p ¼ .065; block 1 < 3 e p ¼ .05,

block 1 < 4e p¼ .026, block 1 < 5e p¼ .037). These effects were

dependent of valence. A significant interaction between

repetition number, valence, and ROI [F(8, 176)¼ 3.139, p¼ .002,

hp
2 ¼ .125] revealed the following effects: whereas conditions

did not differ in block 1 (10% of repetitions e p > .05), in the

second block (25% of repetitions), amplitude was increased for

happy compared to angry standards only (frontal ROI e

p ¼ .042; frontocentral ROI e p ¼ .022). From blocks 3 (50% of

repetitions) to 5 (100% of repetitions), amplitude increased

significantly for happy compared to both angry and neutral

standards (block 3: frontal ROI e happy > neutral e p ¼ .005,

happy > angry e p < .001; frontocentral ROI e happy > neutral

e p ¼ .006, happy > angry e p ¼ .001; block 4: frontal ROI e

happy > neutral e p ¼ .001, happy > angry e p ¼ .001; fronto-

central ROI e happy > neutral e p ¼ .003, happy > angry e

p ¼ .003; block 5: frontal ROI e happy > neutral e p ¼ .002,

happy > angry e p ¼ .001; frontocentral ROI e happy > neutral

e p ¼ .003, happy > angry e p ¼ .001). Importantly, repetition

effects only reached significance in the case of laughter, at the

frontocentral ROI (block 1 < block 2e p¼ .017; block 1 < block 3

e p ¼ .007, block 1 < block 4 e p ¼ .029; block 1 < block 5 e

p ¼ .043).

3.4. Effects of stimulus status and emotion on neural
oscillations

The within-subject factors of stimulus status, valence, and

ROI were included in the repeated-measures ANOVA. Pre-

stimulus beta power (13e30 Hz) was modulated by both

valence and stimulus status [interaction effecteF(2,

44) ¼ 3.568, p ¼ .037, hp
2 ¼ .140]. The interaction was followed-
utral, positive (laughter), and negative (growls) valence.
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up by testing the effects of condition for standard and deviant

sounds separately. In the case of standard sounds, beta power

was increased for happy (laughter) relative to neutral and

angry (growls) vocalizations [condition effect e F(2,

44) ¼ 6.508, p ¼ .003, hp
2 ¼ .228], even though the comparison

was only statistically significant in the case of neutral vocal-

izations (happy vs. neutral e p ¼ .005; happy vs. angry e

p ¼ .079). In the case of deviant sounds, beta power did not

differ between conditions (p > .05) (see Fig. 5).

3.5. A relationship between oscillatory activity and ERP
amplitude?

The relationship between neural oscillations and ERPs was

examined via a linear regression analysis. The mean power

and ERP amplitude of standard sounds in the four ROIs were

analyzed for each valence type separately. Pre-stimulus beta

power predicted the Repetition Positivity (180e260msec, 100%

repetitions) amplitude related to happy (laughter)

(ß ¼ 104.269, t ¼ 2.348, p ¼ .029), but not angry (p > .05), stan-

dard vocalizations: the higher the power, the more positive

the ERP amplitude for laughter.
4. Discussion

In a dynamically changing environment, the brain actively

compares predictions about upcoming sensory events with

stored sensory information to minimize prediction errors. In

the current study, we probed how predictions of the
Fig. 5 e Time-frequency maps of pre-stimulus induced power a

positive (laughter), and negative (growls) valence.
emotional quality (valence) of vocalizations and actual sen-

sory input are compared during pre-attentive voice process-

ing. Our results revealed that the perceived significance of a

vocalization alters the way the brain generates predictions

about upcoming vocalizations in an unattended auditory

sensory environment. On the one hand, the analysis of neural

activity elicited by standard (frequent) vocalizations indicated

enhanced top-down expectations for laughter, reflected in

enhanced pre-stimulus beta power and an increased Repeti-

tion Positivity. On the other hand, the EEG response to deviant

vocalizations demonstrated that violating probability-based

expectancies elicited stronger error signals in the case of

laughs compared to growls and neutral vocal stimuli.

4.1. Emotional vocal change detection in ERPs

Even though the three types of vocalizations elicited a MMN,

vocal change was treated differently as a function of stimulus

valence: MMN peaked earlier and was more negative for

laughter relative to both growls and neutral vocalizations. In

other words, a prediction error was enhanced by the pro-

cessing of vocal sounds with a positive emotional quality.

In experimental setups aiming to elicit a MMN, short-term

predictive representations of regularities are formed based on

the probability of events that are often repeated (standards).

These representations guide the automatic detection of rare

events (deviants) that do not match the predictions. Similarly,

in the current experiment the auditory system has to extract

high-level features of the vocalizations to generate a deviance

response, such as their emotional valence. Therefore, adding
t electrode Cz for standard vocalizations with neutral,
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Table 3 e Mean amplitude (mV) of the MMN and repetition
positivity for each condition.

Condition

Neutral Happy
(Laughter)

Angry
(Growls)

Mismatch Negativity

Standard .71 (.20) 1.20 (.16) .49 (.28)

Deviant �1.43 (.31) �1.74 (.21) �.94 (.27)

Difference

(Deviant-Standard)

�2.18 �2.94 �1.43

Repetition Positivity (P50: 80e160 msec)

10% 3.73 (.63) 4.26 (.68) 1.67 (.69)

25% 4.02 (.42) 4.60 (.59) 2.58 (.49)

50% 4.15 (.39) 4.59 (.43) 3.21 (.38)

75% 4.10 (.38) 4.77 (.41) 3.43 (.38)

100% 4.16 (.35) 4.78 (.39) 3.29 (.37)

Repetition Positivity (P2: 180e260 msec)

10% 2.87 (.62) 3.50 (.70) 1.99 (.75)

25% 3.27 (.30) 4.74 (.65) 2.54 (.53)

50% 3.42 (.28) 5.16 (.41) 3.06 (.35)

75% 3.41 (.29) 5.10 (.38) 3.37 (.35)

100% 3.47 (.28) 5.11 (.37) 3.28 (.33)

Note: Standard Error is shown in parentheses; the mean values

reflect the average of amplitude across the ROIs included in the

statistical analyses.

c o r t e x 9 2 ( 2 0 1 7 ) 2 3 3e2 4 8 243
to previous evidence on emotional words or pseudowords

(e.g., Schirmer et al., 2005), the observed valence effects in the

MMN response suggest that emotional information conveyed

by short affective bursts may be decoded, at least in part, in a

preattentive way (Leitman et al., 2011; Schirmer et al., 2005).

An important question is whether the mismatch response

arises as a consequence of the emotional quality of the stim-

ulus or the physical differences between the vocalizations. As

we controlled for the effects of physical differences between

vocalizations computing difference waveforms based on a

like-to-like subtraction procedure, it seems unlikely that the

observed difference between laughter and growls can be

attributed to the acoustic properties of the vocalizations.

Furthermore, as arousal ratings did not differ between happy

and angry vocalizations, the observed MMN differences indi-

cate that valence played the most critical role in modulating

prediction.

Increased MMN amplitude for happy (laughter) vocaliza-

tions is at odds with previous visual MMN studies that re-

ported a negativity bias (e.g., Kimura, Kondo, Ohira, &

Schr€oger, 2012; Stefanics, Csukly, Koml�osi, Czobor, & Czigler,

2012). The increased negativity for stimuli of positive

valencemay signal the hedonic value tagging of a vocal signal.

Similarly, a previous fMRI study found that vocal expressions

of happiness preferentially engaged regions of the temporal

cortex and inferior frontal gyrus (regions that are considered

to be generators of the auditory MMNee.g., Alho, 1995), when

contrasted with anger (Johnstone et al., 2006). This pattern of

brain activation was interpreted as reflecting the particularly

high salience of affiliative social vocal cues. Compared to

threat-related vocal cues (i.e., anger), positive vocal signals,

such as laughter, are prevalent stimuli in daily social in-

teractions of individuals with no mood disorders (e.g., Scott

et al., 2014). The distinctiveness of positive vocalizations or

laughter has also been pointed out in previous electrophysi-

ological studies that reported an earlier MMN latency for

happy pseudowords (Schirmer et al., 2005), or an earlier P2 for

laughter expressions (Pell et al., 2015). Due to their relevance

in social interactions, such as in social bonding, laughter may

represent a particularly relevant social signal (Johnstone et al.,

2006; Scott et al., 2014), which has also been associated with

the elicitation of positive affect or emotional contagion (e.g.,

Pell et al., 2015). The effects of valence on the MMN amplitude

and latency may thus indicate an experience-based modula-

tory effect on predictive processing of vocal expressions of

positive emotion.

EEG activity related to standard vs. deviant sounds sheds

light on different neural processes (e.g., Garrido et al., 2009):

ERP activity related to the standard sounds informs on how

predictions are formed based on regularities in the auditory

environment; deviant-related activity clarifies the precision

with which changes in the environment are represented

(Todd et al., 2012). We observed that the Repetition Positivity

was enhanced for laughter. The higher the number of repeti-

tions, the more enhanced the representation of the standard

and the stronger the prediction for this vocal emotion were.

The systematic changes in ERP amplitude as a function of an

increase in the number of standard stimulus repetitions is

compatible with the hypothesis that a prediction error is

minimized and with a relay of predictive information via top-
downmechanisms (Baldeweg, 2007). Specifically, they suggest

enhanced top-down predictive signals for stimuli of positive

valence. Simultaneously, violating expectancies involving

predictable (standard) neutral information yielded stronger

error signals when the unpredicted (deviant) stimulus was of

positive valence than of negative valence. The size of the

deviant negativity suggests that context-sensitive predictions

about the auditory environment (Todd et al., 2012) were

facilitated for positive vocalizations. That laughs evoked both

increased Repetition Positivity and Mismatch Negativity re-

sponses is in good agreement with the observation that more

persistent traces result in larger Repetition Positivity and

enhanced MMN with shorter onset latency (Baldeweg, 2007).

To confirm that positive valence enhances the repetition ef-

fects at a neuronal scale, further research using other types of

positive sounds (e.g., triumph, sensual pleasure) should prove

informative.

Note that an unexpected finding was the lack of MMN dif-

ferences between angry and neutral vocalizations. Despite the

similar MMN amplitude, the examination of ERP activity sepa-

rately for standard and deviant sounds supported the differ-

ential processing of neutral sounds and growls. Indeed, the

deviant negativitywas enhanced for neutral compared to angry

sounds. Further, a closer look at the differences in the ERP

amplitude between standard and deviant stimuli for each

valence type revealed a smaller difference in the case of angry

vocalizations only (see Table 3: Neutral ¼ �2.18 mV;

Laughter¼�2.94 mV; Growls¼�1.43 mV) suggesting that growls

were lesssensitive to theprobabilityof stimuluspresentation.A

related possibility is that predictive processes are impaired for

stimuliwithnegativevalence (fora similar finding ina language

processing task, see Pinheiro, del Re, Nestor, et al., 2013). This

hypothesis is further supported by the observation that the

standard positivity was not modulated by the number of

http://dx.doi.org/10.1016/j.cortex.2017.03.018
http://dx.doi.org/10.1016/j.cortex.2017.03.018


c o r t e x 9 2 ( 2 0 1 7 ) 2 3 3e2 4 8244
repetitions in the case of growls. The disruptive effects of

negative valence on prediction may have resulted in a MMN

patternsimilar to theMMNelicitedbyneutral sounds.However,

this hypothesis requires further investigation.

4.2. Emotional vocal change detection in neural
oscillations

The secondmain goal of our study was to investigate whether

emotional valence effects related to vocal change detection

are also reflected in brain oscillatory activity. The analysis of

neural oscillations aimed to provide further insights into

predictive processes associated with vocal emotional

perception, which could not be obtained by the ERP technique

alone. We found valence-specific involvement of beta activity

in the prediction of vocal emotions.

The idea that beta oscillations are involved in emotional

processes is not new (e.g., Ray & Cole, 1985). Emotion effects in

the oscillatory activity in the beta frequency band have been

reported in studies employing dynamic stimuli such as audio-

visual stimuli (Jessen&Kotz, 2011; Jessenetal., 2012), orprosody

(e.g.,Chenetal.,2015). Inparticular,betaoscillationswere found

to be particularly sensitive to the reward/hedonic value of the

cues (reflected in power increaseseDo~namayor, Schoenfeld, &

Munte, 2012) vs. their aversive content (reflected in power

decreasesee.g., DeLaRosa et al., 2014). Specifically, our findings

underscore the role of pre-stimulus activity for incoming sen-

sations and vocal change detection: pre-stimulus beta power

was increased for happy compared to angry and neutral stan-

dardvocalizations. This finding supports themodulatory role of

pre-stimulus brain states on subsequent perception (e.g., Keil,

Muller, Hartmann, & Weisz, 2014), and the significance of beta

activity in the prediction of both time and content of upcoming

stimuli (e.g., Arnal, 2012; Chang, Bosnyak, & Trainor, 2016;

Geerligs & Akyürek, 2012; Weiss & Mueller, 2012). Previous

studies suggested that beta oscillations adapt to a changing

environment: beta power is increased when the current cogni-

tive state is to be maintained (Engel & Fries, 2010), while it is

decreased when an action is necessary or the current neuro-

cognitive network configuration needs to be revised or changed

(e.g., Lewis, Wang, & Bastiaansen, 2015). The increased beta

power before stimulus onset for expressions of laughter may

signal enhanced top-down expectations for positive vocaliza-

tions. This hypothesis is further strengthened by the observa-

tion that internal models (predictions) shaped the neural

response to the vocalizations and led to an increase of the

signal-to-noise ratio for the predicted vocal signal (i.e., linear

increase in the positive amplitude of the evoked neural

response based on number of repetitions) and consequently

facilitating its processing. Of note, pre-stimulus beta power

predicted the size of the standard-related positivity to happy

vocalizations, indicating that top-down expectations occurring

before stimulus onset modulate the responsiveness to the

forthcoming (predicted) stimulus.

As beta oscillations have been related to the activation of

sensorimotor processes, the current findings may further

indicate the involvement of the sensorimotor system in vocal

emotional perception and comprehension (e.g., action simu-

lation in motor regions), even when attention is not directed

toward the vocalization (e.g., Banissy et al., 2010; Jabbi et al.,
2015). This is not surprising as the voice represents a direct

product of body movements (e.g., Jessen et al., 2012), and as

perception is intricately linked to action (e.g., Scott, Sauter, &

McGettigan, 2009). In particular, the preferential activation of

the motor system (i.e., automatic preparation of responsive

orofacial gestures) in response to positive vocal emotions,

such as amusement and triumph (compared to negative vocal

expressions such as disgust and fear) was proposed to play a

fundamental role in the formation of empathic responses (i.e.,

mirroring the positive emotional states of others), and in the

establishment of cohesive social bonds (Warren et al., 2006).

However, in the absence of source localization of the beta

effects, this hypothesis remains speculative. Questions to be

addressed in future studies thus include the role of sensori-

motor processes in vocal emotional change detection.

4.3. Implications for current models of vocal emotional
perception and clinical conditions

Sohow is anemotional (positive vs. negative valence) change in

the voice detected when we do not focus attention to it? Our

findings add to previous studies indicating that emotional voice

processing is at least partially automatic (e.g., Liu et al., 2012;

Schirmer et al., 2005), and point to a rapid categorization of

emotionally relevant acoustic vocal properties that were not

attended to (e.g., Goydke, Altenmüller, M€oller, & Münte, 2004;

Schirmer et al., 2005; Thonnessen et al., 2010). In addition,

they align with accumulating evidence showing that rapid

emotional salience detection happenswithin the first 200msec

after voice onset (linked to the fronto-centrally distributed P2

component in studies of explicit vocal emotional processing e

e.g., Paulmann & Kotz, 2008; Pinheiro et al., 2013), and that

discrete emotional categories may be distinguished from one

another and from neutral sounds within these first 200 msec

(e.g., Liu et al., 2012; Pinheiro et al., 2013, 2014). Even though

stimulus probability was kept the same for all conditions, an

enhanced MMN and Repetition Positivity amplitude, as well as

enhanced induced beta power for positive vocalizations

revealed stronger predictions for laughter. Together, these

findings suggest the existence of specialized brainmechanisms

for emotional change detection within low-level auditory

cortical regions (Thonnessen et al., 2010). Even though previous

studies did not find valence-specific differences in amplitude

within the first 200 msec after voice onset, differences in the

type of stimulus may have accounted for the lack of specific

valence effects. Indeed, these previous studies relied on pros-

ody, and more recent studies suggest that emotional prosody

elicit later and less differentiated ERP responses than prosodic

speech during early emotion evaluation (Pell et al., 2015).

Alterations in predictive processes, such as aberrant

encoding of prediction errors, have been related to the for-

mation of symptoms such as hallucinations and delusions

(e.g., Fletcher & Frith, 2009). Deficits in MMN amplitude have

been consistently reported in schizophrenia patients (e.g.,

Todd et al., 2008, 2012), and contribute to poor psychosocial

outcome in schizophrenia (Light, Swerdlow, & Braff, 2007).

Deficits in vocal emotional perception are also a central

feature of schizophrenia (e.g., Pinheiro et al., 2013, 2014). Thus,

probing the MMN with vocal emotions may provide a prom-

ising tool to study predictive coding related to social

http://dx.doi.org/10.1016/j.cortex.2017.03.018
http://dx.doi.org/10.1016/j.cortex.2017.03.018
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communication processes, and its abnormalities in disorders

such as psychosis.
5. Conclusions

Communicating and comprehending vocal emotions is ahighly

complex process. As the brain starts different operations when

processing complex vocal information, these operations may

be better understood in a multi-measures approach including

ERPs, neural oscillations, and behavioral data. In the current

study, we explored the effects of valence on predictive mech-

anisms during vocal emotional perception. We showed that

stimulus valence modulates prediction and change detection

during implicit vocal emotional perception. TheMMN response

was increased to happy (laughter) compared to neutral and

angry (growls) vocalizations. Laughter alsoelicitedan increased

Repetition Positivity as a function of the number of standard

repetitions. Furthermore, beta power was enhanced for

laughter in the 150 msec before stimulus onset and predicted

the Repetition Positivity for standards.

These findings confirm that the brain is tuned to predict

emotional cues and to detect vocal changes as a function of

stimulus valence and social significance. Specifically, they

suggest that the ability to predict future events based on what

we have heard before is enhanced when these events have a

positive quality. In other words, compared to growls, laughter

seems to be a better change detector of the human voice.
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