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A B S T R A C T   

Background: Resting state (RS) brain activity is inherently non-stationary. Hidden semi-Markov Models (HsMM) 
can characterize continuous RS data as a sequence of recurring and distinct brain states along with their spatio- 
temporal dynamics. 
New method: Recent explorations suggest that HsMM state dynamics in the alpha frequency band link to auditory 
hallucination proneness (HP) in non-clinical individuals. The present study aimed to replicate these findings to 
elucidate robust neural correlates of hallucinatory vulnerability. Specifically, we aimed to investigate the 
reproducibility of HsMM states across different data sets and within-data set variants as well as the replicability 
of the association between alpha brain state dynamics and HP. 
Results: We found that most brain states are reproducible in different data sets, confirming that the HsMM 
characterized robust and generalizable EEG RS dynamics on a sub-second timescale. Brain state topographies and 
temporal dynamics of different within-data set variants showed substantial similarities and were robust against 
reduced data length and number of electrodes. However, the association with HP was not directly reproducible 
across data sets. 
Comparison with existing methods: The HsMM optimally leverages the high temporal resolution of EEG data and 
overcomes time-domain restrictions of other state allocation methods. 
Conclusion: The results indicate that the sensitivity of brain state dynamics to capture individual variability in HP 
may depend on the data recording characteristics and individual variability in RS cognition, such as mind 
wandering. Future studies should consider that the order in which eyes-open and eyes-closed RS data are ac-
quired directly influences an individual’s attentional state and generation of spontaneous thoughts, and thereby 
might mediate the link to hallucinatory vulnerability.   

1. Introduction 

1.1. Resting state dynamics 

The resting brain transitions between episodes of engaged and dis-
engaged functional networks. This is reflected in fluctuating neural 
oscillatory signatures on a sub-second timescale (Hutchison et al., 
2013). Recent evidence suggests that continuous resting state (RS) ac-
tivity can be systematically differentiated by a dynamic state allocation 
framework, in which the neural time series is segmented into a finite set 
of distinct but recurrent patterns of functional connectivity (FC), called 

brain states (Trujillo-Barreto, Araya, Astudillo, and El-Deredy, 2024; 
Vidaurre, Quinn, Baker, Dupret, Tejero-Cantero, and Woolrich, 2016; 
Woolrich et al., 2013). These brain states conform to underlying 
large-scale neural network activation patterns, and their switching dy-
namics relate to cognitive (dys-)function in healthy and patient pop-
ulations (Kottaram et al., 2019; Nishida et al., 2013; Vidaurre et al., 
2016). However, the states are “hidden”, as they cannot be directly 
observed. 
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1.2. HsMM for dynamic brain state allocation 

Different methods have previously been used to identify brain states 
and to characterize their temporal dynamics, including the sliding 
window approach, microstate analysis, or several generative modeling 
approaches (Andreou et al., 2014; Geng, Xu, Sommer, Luo, Aleman, and 
Ćurčić-Blake, 2020; Kottaram et al., 2019; Trujillo-Barreto et al., 2024). 
As these methods differ considerably in their assumptions, advantages, 
and shortcomings, they are not equally suited to reveal the sub-second 
dynamics of the resting brain (Honcamp, Schwartze, Linden, 
El-Deredy, and Kotz, 2022; Hutchison et al., 2013; Rukat, Baker, Quinn, 
and Woolrich, 2016). 

Probabilistic generative methods, such as the Hidden semi-Markov 
Model (HsMM), conceive the brain as a hybrid dynamic system, in 
which a fixed number of hidden states emit the continuous time series 
data that can be recorded with adequate neuroimaging methods such as 
electroencephalography (EEG) (Trujillo-Barreto et al., 2024). Unlike 
other approaches, the HsMM is not restricted by a pre-defined temporal 
window or a fixed number of states in its characterization of brain state 
dynamics (Honcamp et al., 2022; Trujillo-Barreto et al., 2024). The 
HsMM also overcomes the main limitation of the classic Hidden Markov 
Model (HMM) by explicitly estimating state durations, which allows 
more accurate estimation of long-term dependencies of neural time se-
ries (Buzsáki and Mizuseki, 2014; Roberts, Boonstra, and Breakspear, 
2015). Successful application of the HsMM to functional magnetic 
resonance imaging (fMRI) and magneto-/electroencephalogram 
(M/EEG) data showed that the temporal dynamics of brain states reflect 
between-subject variability in cognition and behavior (Honcamp et al., 
2024; Kottaram et al., 2019; Vidaurre et al., 2016). The HsMM is thus a 
promising means for accurate and highly temporally resolved charac-
terizations of early predictive neural markers of psychopathology 
(Honcamp et al., 2022; Trujillo-Barreto et al., 2024). 

1.3. Hallucinatory vulnerability 

Following this rationale, recent work explored the applicability of a 
Bayesian formulation of the HsMM to assess whether temporal brain 
state dynamics in the alpha frequency range relate to inter-individual 
differences in hallucinatory predisposition in a non-clinical participant 
sample (Honcamp et al., 2024). 

Hallucinatory experiences offer a particularly viable test case as they 
are essentially untriggered (i.e., spontaneous) sensory events in one or in 
different modalities that occur in the absence of a corresponding 
external source (Johns and Van Os, 2001). Evidence suggests that hal-
lucinations result from dysfunctional source attribution, i.e., difficulties 
differentiating between internally and externally generated sensory 
events (Badcock and Hugdahl, 2012; Pinheiro et al., 2019). Although 
they are a cardinal symptom of psychotic disorders, most prominently 
schizophrenia, hallucinations are experienced by various other patient 
populations as well as by individuals from the general population 
(Bartels-Velthuis, Jenner, van de Willige, van Os, and Wiersma, 2010; 
Johns et al., 2014; Linszen et al., 2022). Accordingly, the psychosis 
continuum hypothesis suggests that the neural correlates of hallucina-
tory experiences in non-clinical individuals (i.e., without a formal 
diagnosis) are an attenuated version of those observed in clinically 
diagnosed individuals (Johns et al., 2014). The continuity of halluci-
natory experiences is often referred to as hallucination proneness (HP), 
and is empirically supported by neuroimaging, electrophysiological, and 
behavioral studies (Allen, Freeman, Johns, and McGuire, 2006; Allen, 
Johns, Fu, Broome, Vythelingum, and McGuire, 2004; Badcock and 
Hugdahl, 2012). 

Hallucinations and hallucinatory vulnerability are associated with 
several electrophysiological markers, including alterations in specific 
EEG frequency bands (Ford et al., 2012; Kindler, Hubl, Strik, Dierks, and 
Koenig, 2011). For example, alpha (8–12 Hz) power changes are linked 
to the perception threshold for sensory information, thus reflecting 

individual variability in sensory sensitivity (Craddock, Poliakoff, 
El-Deredy, Klepousniotou, and Lloyd, 2017; Ecsy, Jones, and Brown, 
2017; Shen, Han, Chen, and Chen, 2019). Hence, alpha band activity 
might indicate whether sensory events are (accurately) detected and 
therefore might also play a role in auditory phantom perceptions. RS 
alpha power fluctuations have been linked to changes in cognitive 
control (Clements, Bowie, Gyurkovics, Low, Fabiani, and Gratton, 
2021). Lastly, alpha power also correlates with changes in attentional 
focus, e.g., during mind wandering and attentional switching between 
the external world and the internal physiological state (da Silva, Gon-
çalves, Branco, and Postma, 2022; Webster and Ro, 2020). Alpha band 
activity thus seems to relate to the brain’s dynamic adaptation to the 
variable demands of distinct attentional states. In turn, increased 
hallucinatory vulnerability is characterized by pronounced alterations 
in perceptual sensitivity, cognitive control, and attentional focus (Pau-
lik, Badcock, and Maybery, 2008; Perona-Garcelán et al., 2014; F. Wa-
ters et al., 2012). 

RS dynamics in the alpha band reflect individual differences in the 
vulnerability to auditory hallucinatory experiences (Honcamp et al., 
2024). Specifically, mean activation duration and relative time spent in 
a distinct brain state characterized by auditory, somatosensory, and 
posterior default-mode network activity positively correlated with 
auditory (verbal) hallucinatory vulnerability. These findings suggest 
that alpha state dynamics during rest may reflect individual variability 
in attentional bias towards internal sensory events and altered percep-
tual sensitivity in the auditory domain. However, this study was the first 
investigation into the predictive value of HsMM state dynamics for HP 
and it involved a relatively small group of individuals. This warrants 
further systematic assessment of the reliability of the approach and the 
sensitivity of dynamic features of continuous EEG RS data as clinically 
relevant risk markers. 

Considering data-inherent uncertainty (i.e., different sources of 
noise) and the stochastic nature of computational modeling (Beam, 
Manrai, and Ghassemi, 2020; Miłkowski, Hensel, and Hohol, 2018), the 
current study investigated (i) whether HsMM brain states are repro-
ducible across different data sets and (ii) whether temporal dynamics of 
a given state are reproducible and robust predictors of non-clinical HP. 
Verifying the robustness of analysis tools and the replicability of 
research findings is indispensable to ensure that the identified electro-
physiological markers of cognition and behavior are accurate and rele-
vant. As the HsMM is still a novel tool to characterize brain state 
dynamics, the replication of findings also contributes to the identifica-
tion of brain states that are robust to differences in recording proced-
ures, number of electrodes, and other external influences. Consequently, 
discovering replicable brain states in different data sets further aids the 
physiological interpretation of the states, which will ultimately facilitate 
a better understanding of the underlying mechanisms of the HP con-
tinuum. To this end, data recorded and analyzed in Honcamp et al. 
(2024) was used as a reference data set and compared to a newly ac-
quired replication data set. As this replication experiment is exploratory 
in nature, no specific hypotheses were generated. 

2. Methods 

Two data sets were used for the current replication study. Data set 1 
(DS1) was obtained in our previous study (Honcamp et al., 2024) and 
consisted of 33 individuals varying in HP. Details on the sample char-
acteristics, data collection, and processing can be found in Honcamp 
et al. (2024). Data set 2 (DS2) was obtained at the University of Lisbon, 
Portugal. Relevant details regarding participant recruitment and data 
processing are reported below. To maximize comparability to the results 
obtained in DS1, the data (pre-)processing, analysis, and modeling 
pipeline was adapted from Honcamp et al. (2024). 

H. Honcamp et al.                                                                                                                                                                                                                              
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2.1. Participants and procedure 

Ethical approval for DS2 was granted by the Deontological Com-
mittee of Faculty of Psychology at the University of Lisbon. Inclusion 
criteria for participation were: 1) native European Portuguese speaker; 
2) right-handedness; 3) no history of psychiatric, neurological, or major 
medical illness, or clinical diagnosis of drug or alcohol abuse; 4) no 
present medication for clinical disorders that would affect EEG 
morphology, and 5) normal or corrected-to-normal vision and hearing. 
The final dataset (DS2) consisted of 65 individuals from the general 
population (50 females, 15 males, mean age = 21.57, SD = 6.59, age 
range = 18–48). Participation was compensated by course credits or a 
10 € voucher. Participants provided written informed consent prior to 
participation. 

Data collection took place at the University of Lisbon. Participants 
were invited for a behavioral assessment and an EEG recording session. 
HP was assessed using a validated Portuguese version of the Launay- 
Slade Hallucination Scale (LSHS) (Castiajo and Pinheiro, 2017). The 
LSHS consists of 16 items and specifically probes hallucinatory predis-
position in non-clinical individuals. The items are scored on a 5-point 
Likert scale ranging from 0 (“certainly does not apply to me”) to 4 
(“certainly applies to me”). Higher scores indicate a higher vulnerability 
to hallucinatory experiences. For each participant, we obtained the total 
HP score, reflecting an individual’s general predisposition to halluci-
natory experiences as well as scores of the 5-item auditory HP (A-HP) 
and the 3-item auditory-verbal HP (AV-HP) subscales (Honcamp et al., 
2024; Pinheiro, Schwartze, Amorim, Coentre, Levy, and Kotz, 2020). 

2.2. EEG data recording and processing 

The EEG recording took place on the same day after the behavioral 
assessment. RS EEG data were recorded for 6 minutes, split into 3 mi-
nutes eyes-closed (EC) and 3 minutes eyes-open (EO) in the same order 
for all participants using a 64-channel Active Two BioSemi system 
(https://www.biosemi.com/products.htm). EEG recordings took place 
in an acoustically and electrically shielded EEG booth. Prior to the start 
of the recording, participants were asked to minimize bodily movements 
(including facial movements and blinking) and to stay awake. Between 
the EC and EO conditions, the experimenter entered the booth and 
instructed the participants explicitly to open their eyes. 

EEG data were preprocessed using EEGLAB v2021 (Delorme and 
Makeig, 2004). As the length of the raw EC and EO data segments varied 
between participants, all data segments were cut to the same length of 
3 minutes. Like in Honcamp et al. (2024), only EC data were used in the 
current replication. Data preprocessing included downsampling to 
512 Hz, band-pass filtering between 1 and 40 Hz, rejection and spline 
interpolation of noisy channels using the clean_rawdata algorithm of 
EEGLAB (flat-line criterion = 5; channel criterion = 0.8; line noise cri-
terion = 4; mean number of rejected and interpolated channels per 
participant = 5.17; SD = 3.13), average re-referencing, Automatic 
Subspace Reconstruction (ASR) with a burst criterion of 20 as imple-
mented in EEGLAB, and combined ICA/PCA for identification of noisy 
components and control for rank deficiency. Components corresponding 
to eyeblinks, horizontal and vertical eye movements, remaining noisy 
channel activity, muscle-related activity, and line noise were removed 
(mean = 5.92; SD = 2.00). 

2.3. Generation of data set variants 

To match the sample size of DS1, DS2 was randomly divided into two 
smaller data subsets with 33 and 32 participants, respectively, from now 
on referred to as DS2a and DS2b. This ensured that any state differences 
between DS1 and DS2 were not due to discrepant sample size and any 
observed differences between DS2a and DS2b could not be attributed to 
differences in recording environment, hardware, number of electrodes, 
or recording time. Additionally, to account for variability in LSHS scores 

between DS1 and DS2, we selected another data subset, referred to as 
DS2c, with HP, A-HP, and AV-HP scores matching those of the partici-
pants in DS1. For this, we first identified those participants of DS2 who 
obtained HP, A-HP, and AV-HP scores not exceeding the maximum score 
of the corresponding (sub-)scales of the participants included in the DS1 
training set. Specifically, participants who did not exceed a HP score of 
42, an A-HP score of 14, and an AV-HP score of 8 were identified (see  
Table 1 for LSHS descriptives of all data sets). To match the sample size 
of all other included data sets, 33 participants were then randomly 
selected to comprise DS2c. 

We also explored whether any potential difference in state maps or 
state dynamics between DS1 and the DS2 variants could result from i) 
the difference in data lengths (5 minutes DS1 versus 3 minutes DS2 
variants) and ii) the additional difference in the number of channels 
(128 channels in DS1 versus 64 channels in DS2). To this end, we created 
a new data set, DS1.1, containing the first 3 minutes from the already 
pre-processed data of DS1. Additionally, to explore the influence of the 
number of channels, we extracted 64 channels from DS1.1, corre-
sponding to those used in all DS2 variants. The resulting data set, DS1.2, 
thus contained the first 3 minutes of EC RS data of 64 channels equiv-
alent to DS2 variants. Note that the data of DS1.2 were re-referenced to 
the common average again after extracting the 64-channel subset. 

An overview of sample characteristics of all data sets and modifica-
tions is provided in Table 1. 

2.4. Data transformation and feature extraction 

Fig. 1 provides a schematic visualization of the data processing and 
analysis pipeline. After preprocessing, all data set variants were divided 
into two subsets: “lower” and “higher” hallucination-prone participants, 
serving as training and test sets, respectively. The training set comprised 
participants with the lower two-thirds of the HP scores, while partici-
pants with the upper third of HP scores served as the test set. This 
splitting prevented introducing bias in the estimation of brain state 
dynamics, i.e., conflating presumed normative and changed dynamics of 
low and high hallucination-prone individuals, respectively (Honcamp 
et al., 2024). 

Data transformation and modeling were performed in MATLAB 
v2020b using the Brain Dynamics Toolbox and custom MATLAB scripts 
(Trujillo-Barreto et al., 2024). Each individual training set was then 
transformed separately according to the following steps. Data of the 
training sets (“lower” scoring individuals) were band-pass filtered be-
tween 8 and 12 Hz and detrended. A Hilbert transformation was per-
formed to extract the signal envelope, which was then normalized for 
each participant by the global standard deviation across channels and 
time points. Data were then logarithmically transformed. To increase 
computational efficiency, the data of all participants were temporally 
concatenated and subjected to a PCA. We reduced the data of DS1.2 and 
all DS2 variants to 24 and the data of DS1.1 to 30 principal components, 
retaining at least 90% of the explained variance (Table 1). Lastly, the 
PCA-reduced normalized envelope signal was downsampled to 64 Hz. 
The transformed data, concatenated for all participants (components x 
time points), then served as the input to the HsMM. The data of each 
respective test set (“higher” scoring individuals) of all data sets were 
then transformed accordingly, using the PCA coefficients obtained from 
each respective training set. The latter ensured transforming the data 
into the same dimensional space. 

2.5. Brain state allocation using HsMM and estimation of state dynamics 

We applied a HsMM to each training data set separately to identify 
five transiently stable and recurrent brain states with distinct spatio- 
temporal characteristics. Preliminary data explorations showed that 
five states sufficiently characterized between-state variability (Honcamp 
et al., 2024). We used a Multivariate Normal (MVN) distribution to 
model the state emissions and a log-normal distribution to model the 
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state durations. The variational inference algorithm was randomly 
initialized and repeated ten times to avoid dependence on initial con-
ditions. The run that maximized the Negative Free Energy (NFE) was 

selected as the final model. The NFE is considered a measure of model 
quality, balancing model accuracy and complexity (Trujillo-Barreto 
et al., 2024). 

Table 1 
Descriptive statistics of included datasets.   

DS1 DS2a DS2b DS2c DS1.1 DS1.2 

Sample characteristics N – Training set 26 26 25 26 26 26 
N – Test set 7 7 7 7 7 7 
Number of channels 128 64 64 64 128 64 
Data length 5 min 3 min 3 min 3 min 3 min 3 min 

LSHS scores Total HP       
mean 
SD 
range 

15.36 
10.68 
0–42 

24.18 
11.88 
3–51 

22.03 
12.79 
1–47 

20.82 
8.91 
1–36 

15.36 
10.68 
0–42 

15.36 
10.68 
0–42 

A-HP       
mean 
SD 
range 

4.33 
4.04 
0–14 

7.21 
4.69 
0–19 

6.34 
4.77 
0–15 

5.36 
3.29 
0 – 11 

4.33 
4.04 
0–14 

4.33 
4.04 
0–14 

AV-HP       
mean 
SD 
range 

2.09 
2.68 
0–8 

3.75 
3.38 
0–12 

3.68 
3.14 
0–10 

2.64 
2.33 
0–7 

2.09 
2.68 
0–8 

2.09 
2.68 
0–8 

Data transformation Number of PCs 30 24 24 24 30 24 
% expl. variance 90.13% 90.50% 90.10% 90.54% 90.16% 90.02% 

Note. DS = Data set; LSHS = Launay-Slade Hallucination Scale; HP = Hallucination proneness A-HP = Auditory HP, AV-HP = Auditory-verbal HP; SD = standard 
deviation, PCs = Principal components obtained by Principal Component Analysis. Note that DS1, DS1.1, and DS1.2 include the same sample of participants, thus LSHS 
scores are equivalent. 

Fig. 1. Schematic visualization of the data processing and analysis pipeline. a. Splitting. The schematic graph depicts the distribution of hallucination proneness (HP) 
scores of all participants within a data set (each point refers to one participant). Each individual data set was split into a training and a test set, consisting of in-
dividuals with the lower two-thirds and the upper third of HP scores, respectively, illustrated by the dashed red line. b. Transformation. Data transformation included 
filtering to the alpha band (8–12 Hz), Hilbert transform, normalization, logarithmic transformation (not shown here), Principal Components Analysis (retaining 
>90% of explained variance of the data), and downsampling of the component data. The concatenated data (components x time points) of all participants were used 
as input to the model. c. HsMM. State allocation was performed by applying a Hidden semi-Markov Model (HsMM) to the concatenated data of all participants within 
a data set. d. Dynamics. The temporal brain state dynamics were calculated directly from the state sequence. The state’s mean duration is the average activation time 
of a state in seconds, while the fractional occupancy refers to the relative time occupied by a state in percent. 
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The state dynamics of all individuals in each respective training set 
(i.e., “lower” scoring individuals) could be obtained directly from the 
resulting state sequence. State sequences of all “higher” scoring in-
dividuals in the test sets were decoded by applying the already estimated 
model parameters from each corresponding training model output to the 
unseen data. Following this, two dynamic features were extracted for 
each state and each participant. Fractional Occupancy (FO), the total 
time occupied by a state compared to the total recording time, was 
calculated by summing up each individual activation duration divided 
by the total recording length of each respective data segment and is 
expressed as a percentage. The states’ mean duration (MD), the average 
time a state is active, was obtained by fitting a lognormal curve to the 
histogram of empirical state durations of each participant and state to 
extract the location (mu) and scale (sigma) parameters of the lognormal 
distribution. The lognormal mu values were then transformed to a 
normal scale to obtain interpretable duration values in milliseconds. Of 
note, duration values were only calculated if a participant visited a given 
state at least five times. 

As the HsMM output corresponds to a PCA-reduced dimensional 
space, the state topographies cannot be directly interpreted. Therefore, 
state maps were obtained by projecting the mean of the estimated 
emission distributions from the HsMM back to the sensor space. To this 
end, the mean vector of the estimated MVN distribution for each state 
was multiplied by the PCA coefficients obtained during the data 
preparation. 

2.6. Statistical analyses 

Statistical analyses were performed in IBM Statistics SPSS v26 (IBM 
Corp., 2019) and MATLAB v2020b. To assess the reproducibility of the 
states’ characteristics (state maps and state dynamics) between data 
sets, we performed correlational analyses and Kolmogorov-Smirnov 
(KS) tests. The KS test quantifies the equality of continuous distribu-
tions of two samples according to the null hypothesis that the data from 
both samples were drawn from the same underlying distribution. To 
investigate the replicability of the relationship between the state dy-
namics (FO and MD) and HP within each sample, we performed non- 
parametric (Spearman’s Rho) correlations. 

3. Results 

3.1. Reproducibility of states between and within data sets 

3.1.1. State maps 
The five HsMM state maps of DS1, DS2a, DS2b, and DS2c are 

depicted in Fig. 2, panel A. The order of the states as direct output of the 
HsMM is arbitrary. To aid visual comparison, we reordered the maps 
according to their closest match to the state maps obtained for DS1 as 
reported before (Honcamp et al., 2024). Overall, the state maps of all 
DS2 variants showed similarities with DS1 state maps. The most striking 
difference concerned the first state of DS1 (labeled state 1 in Honcamp 
et al., 2024), which was absent in DS2a, DS2b, and DS2c. However, the 

Fig. 2. State maps of all data sub-sets. DS = Data set; A. Between data set replication of state maps. DS1 refers to the state maps obtained from 5 min EC RS data and 
128 channels. The temporal dynamics of the highlighted state (blue rectangle) were found to be predictive of individual variability of auditory (verbal) hallucination 
proneness (Honcamp et al., 2024). DS2a refers to the state maps obtained from 3 min EC RS data and 64 channels corresponding to the first random sample of 
participants. Likewise, DS2b state maps correspond to the second random sample of participants. DS2c consists of a sample of participants with LSHS scores matched 
to those of DS1. Participants are different in DS1, DS2a, DS2b. Participants included in DS2c partly overlap with those of DS2a and DS2b. B. Within data set 
replication of state maps. DS1.1 refers to an adaptation of DS1.1 consisting of the first 3 min of the continuous EC data segment and all original 128 channels. Lastly, 
DS1.2 refers to the first 3 min of EC data from DS1 with 64 channels. The selected channels match those that are included in all DS2 variants. Participants of DS1, 
DS1.1, and DS1.2 are equal. See Table 1 for a comprehensive description of data sets. 
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maps of DS2 variants were close to identical to each other, suggesting 
that the state maps can be robustly reproduced between different data 
set variants. The state maps obtained for DS1.1 and DS1.2 are shown in 
Fig. 2 panel B. Interestingly, state maps of all DS1 variants show sub-
stantial similarity, indicating the within-data set reproducibility of 
HsMM brain state maps. Consequently, the differences between DS1 and 
DS2 are likely not attributable to the data recording length or the 
number of channels. 

To quantify the similarity of state maps between DS1 and DS2 vari-
ants, we performed KS tests. Corresponding statistics can be found in 
Supplementary material A (Supplementary Tables 1 and 2). While the 
state maps of DS1 variants were not statistically different, the state maps 
of DS2 variants showed some differences, mainly concerning state 5, 
likely due to the extent of the fronto-central positivity (see Supple-
mentary Fig. 1 and 2 for reference). 

3.1.2. State dynamics 
We also investigated the consistency of empirical state duration and 

FO distributions across the different variants within data sets DS1 and 
DS2. Supplementary Fig. 3 and 4 (section A2) show the empirical state 
duration distributions for DS1 and DS2, respectively. The similarity 
between distributions was assessed by KS tests and Pearson’s R (Sup-
plementary Tables 3 and 4). For all comparisons of the same state across 
data set variants, the state’s duration distributions were not statistically 
different. Likewise, Supplementary Fig. 5 and 6 (section A3) show the 
states’ FO distributions for DS1 and DS2 variants, respectively. Sup-
plementary Tables 5 and 6 depict the corresponding KS tests for equality 
of distributions. As for the state durations, the FO distributions per state 
were not statistically different across DS1 variants. Regarding the DS2 
variants, only one state’s FO distribution was different between DS2a 
and DS2b. 

3.2. Replicability of relationship between state dynamics and 
hallucination proneness 

Honcamp et al. (2024) showed that FO and MD of one state (high-
lighted in blue in Fig. 2; referred to as state 1 in the original publication) 
were predictive of individual variability in auditory (and 
auditory-verbal) hallucinatory vulnerability. However, the fact that this 
state was absent in all DS2 variants implies that this effect cannot be 
replicated. Exploratory non- parametric correlations between all states’ 
FO and MD values of DS2a, DS2b, and DS2c can be found in Supple-
mentary Material B (Supplementary Tables 7-9). 

To assess the replicability of the relationship between state dynamics 
and hallucinatory vulnerability in DS1 variants (DS1.1 and DS1.2), we 
performed non-parametric correlations between state 1 FO and MD 
values and general HP, A-HP, and AV-HP (Table 2). The correlational 
analysis showed a consistent pattern. The relationship between FO/MD 
and general HP was not significant in all DS1 variants, suggesting that 

none of the included metrics captured individual variability in general 
hallucinatory vulnerability as measured by the LSHS. Interestingly, in 
DS1.1, only FO was significantly associated with both A-HP and AV-HP, 
whereas in DS1.2, only MD showed a positive association. This 
discrepancy might reflect that different state dynamics are differently 
sensitive to data characteristics such as the data length or the number of 
electrodes. 

4. Discussion 

The current study investigated (i) whether HsMM brain states in the 
RS alpha frequency band are reproducible across different data sets, and 
(ii) whether brain state temporal dynamics are robust predictors of non- 
clinical HP. To this end, we applied an HsMM to two independent data 
sets and within-data set variants to estimate five states per model along 
with their spatiotemporal characteristics. We further explored the 
reproducibility of state topographies, duration, and FO distributions 
between and within data sets. 

We found that the five-states model solution was reproducible across 
different within data set variants and was robust against reduced data 
length and number of electrodes. Specifically, states of different variants 
of the same data set showed high degrees of spatial (i.e., state maps; 
Fig. 2) and dynamic (i.e., FO and duration distributions; Supplementary 
Fig. 3–6) similarity. The states further showed considerable overlap 
between data sets DS1 and DS2. Interestingly, the state (here, state 1 
marked in blue in Fig. 2) that was associated with A-HP and AV-HP in 
DS1 (Honcamp et al., 2024) was not represented in either of the DS2 
variants. This suggests that the two data sets were characterized by 
partially qualitatively different brain state topographies, despite con-
trolling for the potential influence of data recording length (DS1.1), 
number of channels (DS1.2), and variability in LSHS scores (DS2c). 
Moreover, while the same state’s FO and MD values of DS1 variants 
showed a consistently positive association with A- HP and AH-HP 
(Table 2), the state dynamics across DS2 variants were rather 
randomly related to LSHS data (Supplementary Tables 7-9). In the 
following, we will discuss this finding, considering between and 
within-individual variability of RS FC and the influence of study design 
and data recording characteristics. 

4.1. Temporal variability of the resting state 

Time-averaged RS FC within large-scale neural networks (i.e., resting 
state networks, RSNs) shows high inter-individual consistency (Dam-
oiseaux et al., 2006). However, there is considerable intra-individual 
variability in RSN connectivity and corresponding electrophysiological 
signatures across time (Baker et al., 2014; Hutchison et al., 2013; 
Woolrich et al., 2013). This neural variability reflects distinct cognitive 
modes, referred to as phenotypes of RS cognition, that characterize 
different stimulus-independent thought patterns and attentional states 
during unconstrained episodes of mind wandering (Diaz et al., 2014, 
2013; Gonzalez-Castillo, Kam, Hoy, and Bandettini, 2021). Using the 
Amsterdam Resting- State Questionnaire (ARSQ), Diaz et al. (2013) 
discovered seven dimensions of RS cognition, including Discontinuity of 
Mind, Self, and Somatic Awareness. The ARSQ-based dimensions not 
only revealed individual preferences for a given cognitive mode, but also 
linked to clinical measures and health status (e.g., depression, anxiety, 
and sleep quality). This is consistent with research on RS FC associated 
with cognitive-behavioral variability in healthy and patient populations 
(Vaidya and Gordon, 2013; Zhang et al., 2021). Therefore, a large pro-
portion of variability in the estimated brain state dynamics might result 
from inter-individual differences in cognitive modes, or RS phenotypes. 
Moreover, RS dynamics in the Default-Model Network (DMN) are 
modulated by person-specific factors such as the circadian phenotype 
(Facer-Childs, Campos, Middleton, Skene, and Bagshaw, 2019), 
situation-specific factors, such as the amount (or lack) of external con-
straints, e.g., task instructions, (Christoff, Irving, Fox, Spreng, and 

Table 2 
Non-parametric correlations (Spearman’s Rho) between state 1 fractional oc-
cupancy and mean duration values and hallucination proneness of DS1 variants.    

DS1 DS1.1 DS1.2   

FO MD FO MD FO MD 

HP rho .100 .190 .088  .029  .006 .241  
p-value .579 .291 .628  .871  .972 .176 

A-HP rho .397 .391 .389  .277  .259 .410  
p-value .022* .025* .025*  .119  .145 .018* 

AV-HP rho .408 .459 .390  .333  .140 .408  
p-value .019* .007** .025*  .058  .437 .018* 

Note. DS1 = Data set 1; 5 minutes, 128 channels, DS1.1 = Data set 1.1; 
3 minutes, 128 channels; DS1.2 = Data set 1.2; 3 minutes, 64 channels; HP =
Hallucination proneness A-HP = Auditory HP, AV-HP = Auditory-verbal HP, FO 
= fractional occupancy, MD = mean duration; *p<.05, **p<.01; Reported p- 
values are uncorrected. 
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Andrews-Hanna, 2016) as well as data recording characteristics (Van 
Diessen et al., 2015). The DMN is engaged in spontaneous thought, mind 
wandering, and self-referential processing (Raichle, 2015; Seeley et al., 
2007). Mind wandering is defined as a mental state (or sequence of 
mental states) in which spontaneous, i.e., task- and stimulus-unrelated 
thoughts arise due to the absence of constraints on the content and 
the transition between different mental states, such as instructions of a 
highly demanding cognitive task that require externally focused atten-
tion (Christoff et al., 2016). Consequently, mind wandering naturally 
occurs when external events no longer capture an individual’s attention, 
i.e., during attentional decoupling and periods of low cognitive and 
perceptual load (Forster and Lavie, 2009; Schooler, Smallwood, 
Christoff, Handy, Reichle, and Sayette, 2011). Thus, inter-individual 
variability in RS cognition, attentional (de-)coupling, and DMN activa-
tion might partially explain the observed state differences between DS1 
and DS2. 

4.2. Resting state recording characteristics 

FC and network-based metrics of RS M/EEG recordings are affected 
by several methodological choices in data recording and analyses 
(Gonzalez-Castillo et al., 2021; Van Diessen et al., 2015). For instance, 
the reliability of fMRI FC measures greatly improves with increased data 
length (Birn et al., 2013). Although we did not systematically investigate 
the effect of data length on the replicability of brain states here, we 
observed that the identified state maps remained highly stable when 
reducing the data set from 5 to 3 minutes (DS1 versus DS1.1). However, 
this does not exclude the possibility that a longer RS recording would 
yield a different set of brain states. 

What seems critical in the current findings are the impact of condi-
tion, i.e., eye status, and condition order during the RS data recording. It 
has been consistently shown that brain state dynamics during rest 
qualitatively differ between open and closed conditions (Agcaoglu, 
Wilson, Wang, Stephen, and Calhoun, 2020, 2019). Moreover, EO and 
EC conditions differently relate to vigilance and attentional state (Wong, 
DeYoung, and Liu, 2016) as well as to arousal, which strongly correlates 
with alpha power fluctuations (Barry, Clarke, Johnstone, Magee, and 
Rushby, 2007). Together, these findings suggest that network FC and 
corresponding electrophysiological signatures tend to be more reliable 
with longer recording duration and that they are modulated by the eye 
status during rest, which is directly related to an individual’s attentional 
status. 

To overcome such condition-dependent differences, we opted to only 
include EC data in the current analyses. However, the RS recording of 
DS1 and DS2 differed in the order in which EO and EC data were ob-
tained. Specifically, while the EC data in DS1 were recorded after 
5 minutes of EO data had been collected, the EC data in DS2 were 
recorded for 3 minutes at the beginning of the recording session, i.e., 
prior to the recording of EO the data. This means that participants in DS1 
were in the RS longer than participants in DS2, who did not do EO 
before, but were asked to close their eyes immediately at the beginning 
of the recording session. Given the time course of mind wandering and 
the generation of spontaneous thoughts, it is reasonable to assume that 
individuals in DS1 may have experienced attentional decoupling and 
started to mind wander earlier than the participants in DS2. This might 
be related to differences in external constraints (e.g., task instructions 
requiring externally focused attention), which are modulated by the 
time passing between receiving instructions and the actual start of the 
recording. This would suggest that underlying RSNs dynamics differ 
considerably not only depending on the RS eye status but also on the 
recording order and duration. In support of this hypothesis, a study 
comparing RS activity during different RS conditions showed that DMN 
connectivity significantly differed when EC data were recorded first 
from recordings where EC data was recorded after several other condi-
tions, i.e., EO with and without a fixation cross (Yan et al., 2009). These 
findings also tentatively suggested that the amount of cognitive load, i. 

e., external constraints, during rest modulates mind wandering and 
daydreaming propensity. 

In summary, large-scale network dynamics during rest link to 
attentional shifts from the external environment to internally oriented 
and spontaneous though processes, dependent on variability in external 
constraints (Christoff et al., 2016). Thus, during periods of low external 
constraints, externally generated sensory events might be more easily 
suppressed, which, in turn, facilitates internally focused cognition. This 
attentional decoupling might only manifest after an individual has been 
in a state of rest for some time. Therefore, it is plausible that the DS1 and 
DS2 data reflect fundamentally different episodes at rest, namely one in 
which individuals may still be attentive to their external environment 
(DS2), and one in which individuals have already decoupled from 
external constraints and shifted their attention to internal thought pro-
cesses (DS1). The experience of (auditory-verbal) hallucinations and 
heightened hallucinatory vulnerability have been related to deficient 
attribution of internally versus externally generated sensory events due 
to altered self- and source monitoring (Alderson-Day et al., 2014; Allen 
et al., 2006; Badcock and Hugdahl, 2012; Pinheiro et al., 2019). Further, 
non-clinical, high hallucination-prone individuals show higher 
self-focused attention as compared to individuals with lower HP (Per-
ona-Garcelan et al., 2014). Therefore, distinct attentional states as 
described above may be differently sensitive to individual variability in 
hallucinatory vulnerability as measured at rest. 

4.3. Limitations and future directions 

4.3.1. Number of states 
The current study advances our understanding of HsMM-derived 

EEG RS brain dynamics across different data sets and their potential as 
a neural correlate of non-clinical hallucinatory vulnerability. However, 
it is limited by a number of methodological choices that can affect the 
interpretation of results and offer several possible venues for future 
research. In our original study (Honcamp et al., 2024), we opted for 
fixing the number of states to be identified by the HsMM to five, as this 
number sufficiently characterized between-subject differences in state 
dynamics. Following this decision, the replication experiments 
described here were also based on HsMMs with five states. Fixing the 
number of states is computationally efficient, however, it may not pro-
vide the best fitting model solution for the input data, which may also 
partly explain why one state (labeled state 1 in DS1 variants; see Fig. 2) 
was not represented in DS2. Previous research on the classic Hidden 
Markov Model applied to M/EEG data considered models with up to 12 
states (Hunyadi, Woolrich, Quinn, Vidaurre, and De Vos, 2019; Kot-
taram et al., 2019; Vidaurre, Smith, and Woolrich, 2017). The choice for 
a given number of states can be based on the model’s NFE, a model fit 
metric considering both the complexity and accuracy of the model 
(Trujillo-Barreto et al., 2024). However, exploring a different number of 
states would go beyond the scope of the current study. Future in-
vestigations should therefore consider a higher number of states to 
achieve a more accurate, and potentially more generalizable, repre-
sentation of electrophysiological dynamics during RS. 

4.3.2. Validity of the LSHS composite scores 
We measured HP using the 16-item version of the LSHS, a validated 

and widely used self-report measure of hallucinatory predisposition in 
non-clinical samples (Larøi and Van Der Linden, 2005). Next to a mea-
sure of general HP, we also considered the auditory and auditory-verbal 
composite scores consisting of 5 and 3 items, respectively, following 
(Pinheiro, Schwartze, and Kotz, 2018). Previous research exploring the 
underlying factor structure of the LSHS in non- clinical and clinical 
samples, however, did not consistently find the auditory, nor auditory- 
verbal items as a dissociable factor. Instead, many studies found a factor 
that was best described by multisensory HP, including visual, tactile, 
olfactory, and auditory psychotic-like experiences (Aleman, Nieuwen-
stein, Böcker, and De Haan, 2001; Castiajo and Pinheiro, 2017, 2021; 
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Vellante, Larøi, Cella, Raballo, Petretto, and Preti, 2012). Moreover, a 
factor combining items from auditory and visual domains was most 
effective in differentiating between controls from psychotic individuals 
(Siddi et al., 2018). This may suggest that modality-specific, i.e., audi-
tory subscales may not sufficiently capture individual variability in 
non-clinical hallucinatory experiences and corresponding electrophysi-
ological changes. 

Interestingly, many studies found a distinct factor characterized by 
vivid daydreams and thoughts (sometimes referred to as vivid mental 
events) explaining a considerable amount of variance in the HP scores 
(Aleman et al., 2001; Castiajo and Pinheiro, 2017; Levitan, Ward, Catts, 
and Hemsley, 1996; F. A. Waters, Badcock, and Maybery, 2003). Other 
studies found a factor comprised by items tapping into daydreaming 
propensity and auditory phantom percepts, such as “The sounds I hear in 
my daydreams are usually clear and distinct” and “In the past, I have had 
the experience of hearing a person’s voice and then found no one was 
there” (Preti, Bolton, and Van De Ville, 2017; Siddi et al., 2018; Vellante 
et al., 2012). Although the link between vivid daydreaming, mind 
wandering, and hallucinatory vulnerability is not straightforward, there 
is some support to consider such an association. For instance, patients 
with schizophrenia report more frequent episodes of mind wandering, 
which is associated with the severity of positive symptoms (e.g., hallu-
cinations, delusions; Shin, Lee, Jung, Kim, Jang, and Kwon, 2015). 
Moreover, the proneness to visual hallucinations has been linked to 
higher ratings of vivid imagery, which may contribute to confusing 
externally and internally generated images (Aynsworth, Nemat, Col-
lerton, Smailes, and Dudley, 2017). Lasty, it has been suggested that the 
tendency to misattribute internally generated sensory events to an 
external source (and consequently perceived as a hallucination) is 
strongly modulated by the vividness of the sensory experience (Fazekas, 
2021). However, this hypothesis still lacks sufficient empirical evidence 
and should be investigated further. 

In summary, if we assume that variability in vivid daydreaming and 
mind wandering during EEG data collection underlies the state differ-
ence in DS1 and DS2, scores on the A-HP and AH-HP subscales of the 
LSHS may not be differentiated enough to consistently link to HsMM 
brain state dynamics. This might also explain the inconsistent correla-
tional patterns between the state dynamics of DS2 variants and HP 
presented in Supplementary Tables 7-9. Thus, future studies should 
systematically investigate this and account for individual variability in 
vivid thoughts and imagery as well as mind wandering and daydreaming 
propensity. 

4.3.3. Other electrophysiological correlates 
Related to the previous point, the exploration of other EEG frequency 

bands might offer a complementary perspective on the neurocognitive 
mechanisms underlying HP. Although alpha fluctuations have been 
extensively discussed as a potential electrophysiological correlate of 
mind wandering (e.g., Compton, Gearinger, and Wild, 2019; Dhindsa 
et al., 2019; Webster and Ro, 2020), changes in beta and theta power, as 
well as in beta-theta ratio, have also been associated with mind wan-
dering and task-related attention reduction (da Silva et al., 2022). 
Therefore, considering brain state dynamics across multiple frequency 
bands as a function of both mind wandering and hallucinatory vulner-
ability could be a target for future research. Lastly, given the 
above-summarized evidence, it is plausible that the order in which the 
EO and EC conditions are recorded has a substantial impact on the 
brain’s electrophysiology and, therefore, accounts for the observed 
differences in brain states between the two data sets. However, this 
should be systematically explored in future research to elucidate the 
effect of condition order on HsMM brain states and their link to atten-
tional states and spontaneous thoughts. 

5. Conclusion 

In this study, we aimed to reproduce HsMM brain states of RS EEG 

data in the alpha-band across different data sets and to investigate the 
relationship between the states’ temporal dynamics and hallucinatory 
vulnerability. Brain states of different within-data set variants showed 
substantial similarities and were robust against reduced data length and 
number of electrodes. Moreover, most brain states were reproducible in 
different data sets. However, we could not reproduce a previously 
identified link between state dynamics and HP. We suggest that the 
sensitivity of brain state dynamic features (such as fractional occupancy 
and mean duration) depends partly on the data recording characteristics 
and external constraints, which, in turn, can influence an individual’s 
attentional state. Thus, the relationship between HsMM brain state 
temporal dynamics and HP may be mediated by individual variability in 
attention focus (externally versus internally oriented) and the genera-
tion of spontaneous thoughts. Future research is required to systemati-
cally investigate this hypothesis. 
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