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Malleability and fluidity of time 
perception
Hirohito M. Kondo 1*, Elena Gheorghiu 2 & Ana P. Pinheiro 3

Time perception is inherently subjective and malleable. We experience a wide range of time scales, 
from less than a second to decades. In addition, our perception of time can be affected by our 
attentional and emotional states. Previous psychological and neuroimaging studies have used several 
paradigms and methods to probe factors that influence time perception. Considering these factors 
facilitates approaches to improve time management and to enhance sensory experiences. This 
Collection of time perception studies includes reports that focus on stimulus property, physiological 
state, cross-modal interaction, attention, learning, age, and environment. These findings help to 
illuminate the complex mechanisms of time perception.

Humans have no absolute sense of time. Time perception is fundamentally subjective and depends on 
one’s experiences and circumstances. Moments of excitement and joy can seem dizzyingly faster, whereas 
moments of boredom and stress can feel  interminable1, illustrating how attentional and emotional states 

affect time perception. Also, time perception has critical effects on many cognitive abilities and motor skills. 
For instance, we can play the piano with quick movements. Accurate temporal and rhythmic performance are 
important not only for playing music, but also for multisensory perception, language, and motor  planning2,3. In 
addition, we may vividly recall memories from years ago. We have a broad range of time  scales4. These timings 
appear to be underpinned by different neural  mechanisms5. The brain navigates and processes time ranges from 
subsecond to year, highlighting its remarkable adaptability and complexity.

The more often we pay attention to the passage of time, the longer we perceive time to  be6. Our perception 
of the passage of time may vary as a function of age and  education7 or mood  state8. This is probably consistent 
with the contextual-change hypothesis that the perceived duration of an event is affected by the number of con-
textual  changes9. Extending this idea may explain how different age groups perceive time differently. For boys 
and girls, holiday adventures are hard to come by. Adults have many routine activities and time seems to pass at 
an accelerated pace. Relative to adults, children may use heuristic methods for duration  estimation10. However, 
it should be noted that feeling the passage of time and estimating duration may employ different mechanisms 
of time  perception11.

A simple explanation for the perceived compression and expansion of time is the event-density hypothesis. 
This postulates that the number of events occurring during a certain period affects perception of time  intervals12, 
assuming that the “internal clock” counts at a constant  rhythm13. Directing attention to salient stimuli or engag-
ing in complex tasks increases internal pulses, i.e., the density of events, resulting in the perception that time is 
passing  quickly6. This hypothesis is consistent with the idea that cellular metabolism and the internal clock are 
intimately interconnected. An early study argued that as body temperature increases, the internal clock seems to 
advance faster, leading to the perception of shorter  durations14. Cognitive components, such as working memory 
and attention, were incorporated into the pulse-generating pacemaker and developed into the scalar expectancy 
 model15 and the attentional-gate  model16.

Time perception depends not only on endogenous factors, such as attentional, motivational, and physiologi-
cal  levels17,18, but also on exogenous factors, such as speed of motion, stimulus  complexity19, salience of visual 
stimulus  features20, and spatial, temporal, social  context21 or  environment22. Previous studies have frequently 
employed experimental paradigms such as temporal order or duration judgements to assess time perception of 
short intervals. In such paradigms, a novel or “oddball” stimulus is perceived as longer in duration than repeated 
or “standard”  stimuli23. The first visual stimulus in a train appears to be perceived as longer than successive 
 stimuli24. However, such a phenomenon does not occur in relation to auditory stimuli. There is a consensus that 
timing of subsecond intervals is supported by distributed sensory-specific  mechanisms25,26. An event-related 
potential (ERP) study demonstrated that people with normal hearing, but not deaf individuals, show a strong 
ERP response to visual stimuli in temporal areas during a time-bisection task, whereas the same response is not 
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elicited during a space-bisection  task27 (see also a study of developmental  viewpoint28). Gamma-aminobutyric 
acid (GABA) levels in the human visual cortex measured using magnetic resonance spectroscopy appear to 
correlate with perceived durations of visual intervals, suggesting that the GABAergic system contributes to 
individual differences in time  perception29. However, time perception studies in this Collection have found that 
learning of temporal interval discrimination transfers between auditory and visual  modalities30 and that cross-
modal correspondence between auditory pitch and visual elevation selectively affects temporal  recalibration31.

There is no single sensory organ responsible for time perception. Different brain regions are involved in tem-
poral processing depending on time scales. Subsecond time intervals are mainly processed in the  cerebellum32, 
whereas temporal processing in the range of seconds and minutes is supported by the prefrontal cortex and 
 striatum33,34. In addition, time perception is impaired in disorders of the precuneus/posterior cingulate  gyrus35 
and supramarginal  gyrus36. In particular, the precuneus may contribute to our sense of “presentness”, providing 
the “now” in the passage of  time37,38.

The advent of digital technology has had an unprecedented impact on time perception. Ubiquitous access to 
the Internet facilitates instantaneous information retrieval and synchronous communication. A consequence 
of this persistent connectivity is the potential for information overload, such that the sense of time tends to 
become ambiguous. The widespread prevalence of social media notifications may contribute to the perceived 
acceleration of time. However, through flow and meditation states, alternative perceptions of time can be expe-
rienced. Specifically, a flow experience is a symbolic phenomenon of time distortion, in which one forgets the 
passage of time by immersing oneself in a certain activity. People in a flow state often report this state as being 
“in the zone”39. Although there are anecdotal reports of flow experiences by athletes, few studies have captured 
quantitative aspects of flow  states40. However, some studies have identified flow states in terms of attentional 
 fluctuations41,42. Using such methods, it may be possible to overcome methodological difficulties and to measure 
altered time perception.

Articles in this Collection show that the interplay of stimulus property, physiological state, attention, age, and 
environment fundamentally shapes individual temporal experiences. A deep understanding of these factors is 
undoubtedly crucial to the ongoing field of time perception research.
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